摘要 - 阿尔茨海默氏病(AD)是痴呆症的最常见形式。轻度认知障碍(MCI)是描述前驱AD的阶段的术语,代表了早期AD诊断中的“危险因素”,这是由于老龄化引起的正常认知能力下降。脑电图(EEG)已被广泛研究以进行AD表征,但可靠的早期诊断继续提出挑战。这项研究的目的是使用EEG衍生的功能图像和深度学习技术引入AD患者,MCI受试者和年龄匹配的健康对照组(HC)受试者之间进行分类的新型方法。将141名年龄匹配受试者(52 AD,37 MCI,52 HC)的EEG记录转换为2D灰度图像,代表21 EEG通道之间的Pearson相关系数和距离LEMPEL-ZIV复杂性(DLZC)。每种特征类型都是从原始记录中分割的1s,2s,5s和10s的EEG时期计算的。CNN体系结构ALEXNET已修改并用于这项三向分类任务,并使用70/30拆分进行训练和验证,并使用每个不同的时期长度和EEG衍生的图像进行验证。使用来自10S时期的DLZC衍生图像作为模型的输入获得了73.49%的最大分类精度,但使用从Pearson相关系数和5S时期获得的图像达到了98.13%的分类精度达到98.13%。
尽管磁共振成像 (MRI) 等诊断成像技术的进步使人们对阿尔茨海默病 (AD) 的诊断和治疗有了更深入的了解,但医疗专业人员仍然需要分析图像,这是一个耗时且容易出错的过程。借助神经网络模型,可以更准确、更有效地做出诊断。在本研究中,我们比较了三种著名的基于 CNN 的算法(AlexNet、Faster R-CNN 和 YOLOv4)的性能,以确定哪一种算法在对 AD 患者的脑部 MRI 扫描进行多类分类时最准确。所使用的数据集来自 Kaggle,包含 6400 个训练和测试 MRI 图像,分为四个类别(非痴呆、非常轻度痴呆、轻度痴呆和中度痴呆)。中度痴呆类别的代表性极低。为了获得更准确的结果,通过数据增强将图像添加到该类别中。实验是使用 Google Colab 的 Tesla P100 GPU 进行的。迁移学习应用于所有三个预训练模型,并根据各自的参数调整数据集。增强后,AlexNet 具有最高的 mAP(平均准确率),100% 的时间检测到感兴趣的对象,而 YOLOv4 和 Faster R-CNN 的 mAP 分别为 84% 和 99%。然而,YOLOv4 在混淆矩阵上表现最佳,尤其是对于 ModerateDemented 图像。正如我们的实验所揭示的,像 YOLOv4 这样的单阶段检测器比像 Faster R-CNN 这样的两阶段检测器更快、更准确。我们的研究成功实现了这些模型,并为医学图像诊断做出了宝贵贡献,为未来的研究和开发开辟了道路。
从脑结构MRI和年代年龄估计的大脑年龄之间的抽象差异与广泛的神经认知失误有关。大脑年龄估计的性能在很大程度上取决于预定义或手工制作的功能。尽管已经提出了基于3D卷积神经网络(CNN)方法,但它们需要高计算成本,大记忆负载和众多图像。将预先训练的2D CNN耦合用于转移学习的转移学习与建立的相关性向量机进行回归方法可以极大地增强模型的能力。采用了几种重要策略,包括特征传递学习,3D特征串联和降低维度。估计的大脑年龄是通过594个正常健康老年人(50 - 90岁)的结构磁共振成像(SMRI)建模的。我们提出并表现出预先训练的Alexnet作为可靠的特征提取器。此外,通过应用3D功能串联和减少数据,可以避免开发3D CNN的可观成本。所提出的方法以旧受试者的平均绝对误差为4。51年,可实现出色的性能。预测的大脑年龄也表现出高测试可靠性(类内相关系数为0.979)。对所提出模型的有效性和鲁棒性进行了充分的研究。所提出的方法可以与这些最先进的方法竞争甚至胜过表现,并且功能转移学习策略可以将新的观点引入一些具有预定义或手工制作的功能的知名脑周龄预测模型。
Small-scale locations Low-level visual features Large-scale locations Alexnet layers Shots MFCC Speech Events Low-level visual features Small-scale locations Large-scale locations MFCC Speech Events Speech Low-level visual features Alexnet layers Shots Small-scale locations Large-scale locations MFCC Events Events Low-level visual features Alexnet layers Shots Small-scale locations Large-scale locations MFCC语音
摘要:在磁共振成像 (MRI) 上使用有效的分类技术有助于正确诊断脑肿瘤。先前的研究主要集中在使用支持向量机 (SVM) 和 AlexNet 等方法对正常 (非肿瘤) 或异常 (肿瘤) 脑 MRI 进行分类。在本文中,深度学习架构用于将脑 MRI 图像分类为正常或异常。性别和年龄被添加为更高级的属性,以实现更准确和更有意义的分类。还提出了一种基于深度学习卷积神经网络 (CNN) 的技术和深度神经网络 (DNN) 进行有效分类。还实施了其他深度学习架构,例如 LeNet、AlexNet、ResNet 和传统方法(例如 SVM)来分析和比较结果。年龄和性别偏见被发现更有用并且在分类中起着关键作用,它们可以被视为脑肿瘤分析中的重要因素。值得注意的是,在大多数情况下,所提出的技术都优于现有的 SVM 和 AlexNet。与 SVM(82%)和 AlexNet(64%)相比,总体准确率分别为 88%(LeNet 启发模型)和 80%(CNN-DNN),最佳准确率分别为 100%、92%、92% 和 81%。
摘要:结核分枝杆菌引起的细菌感染导致结核病是一种流行的传染病。这种细菌通常以主要呼吸器官为目标,特别是肺部。结核病对全球健康构成了重大挑战,需要及早发现才能有效治疗。在这种情况下,为了方便医护人员及早发现患者,需要一种能够准确识别肺部疾病的技术。因此,将采用 CNN(卷积神经网络)作为检测肺部图像的算法。该研究将利用卷积神经网络模型,即 AlexNet 和 ResNet。该研究旨在通过分析胸部 X 光片图像来比较这两个模型在检测结核病方面的表现。数据集包括正常患者和结核病患者的 X 光片,共计 4.200 个数据点。训练过程包括将数据分为训练集和验证集,其中 80% 用于训练,20% 用于验证。评估结果表明,AlexNet 模型的检测准确率更高,在验证数据上达到 88.33%,而 ResNet 达到 83.10%。这些发现表明,使用 CNN 模型,尤其是 AlexNet,可以成为通过解读胸部 X 光片图像来增强早期结核病检测的有效方法,对改善全球结核病管理和预防工作具有潜在意义。关键词:AlexNet;ResNet;CNN;早期检测;结核病
数据集中的每个图像的卷积。然后,他们使用LVQ算法进行图像分类和疾病检测。在他们的研究中,他们得出的结论是,使用CNN的LVQ算法有效地对番茄叶疾病的类型进行了分类。Halil Durmus等。 al。 [5]在他们的研究中,试图在硬件Nvidia Jetson TX1上的两个体系结构的帮助下进行疾病检测。 在他们的研究中,他们得出的结论是,Alexnet不适合在移动设备上进行疾病检测,因为Alexnet开发的模型非常笨重,大小为227.6 mbyte,而在Squeezenet架构上开发的模型非常小,大小为2.9Mbyte,大小为2.9mbyte,并且在推断时间的范围也有很大改善。 因此,Squeezenet是Nvidia Jetson TX1等移动设备的最佳架构。 U. Atila等。 al。 [6]试图将最新的深神经净结构与有效网络深度学习结构进行比较,以检测Google云环境中的植物叶子疾病的检测。 他们发现准确性有效网络体系结构比其他CNN体系结构更好,精度为99.97%。 有效网络的精度也比其他CNN体系结构更好。Halil Durmus等。al。[5]在他们的研究中,试图在硬件Nvidia Jetson TX1上的两个体系结构的帮助下进行疾病检测。在他们的研究中,他们得出的结论是,Alexnet不适合在移动设备上进行疾病检测,因为Alexnet开发的模型非常笨重,大小为227.6 mbyte,而在Squeezenet架构上开发的模型非常小,大小为2.9Mbyte,大小为2.9mbyte,并且在推断时间的范围也有很大改善。因此,Squeezenet是Nvidia Jetson TX1等移动设备的最佳架构。U. Atila等。 al。 [6]试图将最新的深神经净结构与有效网络深度学习结构进行比较,以检测Google云环境中的植物叶子疾病的检测。 他们发现准确性有效网络体系结构比其他CNN体系结构更好,精度为99.97%。 有效网络的精度也比其他CNN体系结构更好。U. Atila等。al。[6]试图将最新的深神经净结构与有效网络深度学习结构进行比较,以检测Google云环境中的植物叶子疾病的检测。他们发现准确性有效网络体系结构比其他CNN体系结构更好,精度为99.97%。有效网络的精度也比其他CNN体系结构更好。
国际医学与生物系统物理学学院6-8 2020年11月8日结论:Alexnet和Googlenet体系结构的比较,以对树类型进行分类
心电图(ECG)是心脏病领域的必不可少的工具,因为它可以测量心脏的电活动。它涉及将电极放在患者的皮肤上,从而促进心律的测量和分析。这种非侵入性和无痛测试提供了有关心脏功能的基本信息,并有助于诊断各种心脏病。使用深度学习技术对心电图信号进行分类,近年来引起了极大的兴趣。通过深度学习模型,尤其是卷积神经网络(CNN)的应用,心电图分类任务表现出了令人鼓舞的结果。在本研究中提出了Googlenet,Alexnet和Resnet Deep-CNN模型作为可靠的方法,用于使用ECG数据准确诊断和分类心脏病。这些模型的主要目标是预测和分类普遍的心脏病,包括心律不齐(ARR),充血性心力衰竭(CHF)和正常的窦性节奏(NSR)。为了实现此分类,通过连续小波变换获得的2D缩放图图像被用作模型的输入。该研究的发现表明,在准确预测和分类与这些心脏条件相关的ECG信号方面,Googlenet,Alexnet和Resnet模型的精度为96%,95,33%和92,66%。总体而言,在ECG分析中,深度学习技术(例如Googlenet,Alexnet和Resnet模型)的整合具有提高诊断和分类心脏疾病的准确性和效率的希望,有可能导致改善患者护理和成果。
摘要。背景:阿尔茨海默氏病和轻度认知障碍是老年人的常见疾病,影响了2020年全球超过5000万人。早期诊断对于管理这些疾病至关重要,但是它们的复杂性构成了挑战。卷积神经网络在准确的诊断方面表现出了希望。目的:这项研究的主要目的是使用卷积神经网络诊断健康个体中阿尔茨海默氏病和轻度认知障碍。方法:本研究使用了三种不同的卷积神经网络模型,其中两个是预训练的模型,即Alexnet和Densenet,而第三个模型是CNN1D-LSTM神经网络。结果:在所使用的神经网络模型中,Alexnet在健康个体中表现出最高的准确性,超过98%的轻度认知障碍和阿尔茨海默氏病。此外,Densenet和CNN1D-LSTM模型的准确性分别为88%和91.89%。结论:该研究突出了卷积神经网络在诊断轻度认知障碍和阿尔茨海默氏病的潜力。使用预训练的神经网络以及各种患者数据的整合有助于取得准确的结果。Alexnet神经网络获得的高精度强调了其在疾病分类中的有效性。这些发现为未来的研究和改善使用卷积神经网络诊断这些疾病的领域铺平了道路,最终有助于早期发现和有效地管理轻度认知障碍和阿尔茨海默氏病。