I.引言尼日利亚的医疗保健系统在降低产妇和胎儿死亡率方面面临重大挑战。尽管进行了许多干预措施,但由于诸如医疗基础设施不足,获得优质护理的机会以及熟练的医疗保健人员不足之类的因素,这些速度仍然令人震惊。产妇和胎儿死亡率是医疗系统有效性和可及性的关键指标。尽管努力提高尼日利亚的孕产妇和儿童健康,但第三级医院的死亡率仍然很高(Ikeoha等,2022)。为了应对这些挑战,利用机器学习(ML)和人工智能(AI)等技术非常重要(Khuluq,2023)。根据Okpala和Okpala(2024),AI与医疗保健的整合“需要软件的应用和机器学习的算法,使用输入数据得出近似结论,通过模仿人类对人类的评估和诊断的良好程度,以诊断人类的能力,以诊断有效性,以促进人类的能力,以至于有效地诊断了有效性的范围。疾病。”
通过机器学习算法优化数据仓库性能,美国美国云的独立研究人员,电子邮件:sina0 [at] acm.org摘要:这种全面的概述探讨了机器学习(ML)在数据仓库中的整合,专注于优化挑战,方法,方法,结果,结果以及未来趋势。数据仓库,报告和分析的核心,通过ML进行变革性转变,以应对高维护成本和失败率等挑战。集成通过查询优化,索引和自动数据管理增强了性能。结果显示了ML在工作负载管理,自动查询优化和自适应资源分配中的预测分析中的应用,从而提高了效率。但是,挑战包括数据隐私,安全问题和技能/资源约束。未来的范围可以预测诸如可解释的AI,自动化的ML,增强分析,联合学习和持续情报等趋势,从而对决策,资源分配,数据管理,隐私和实时响应产生潜在的影响。此简洁的摘要封装了ML在数据仓库中的关键方面,以进行整体理解。关键字:云,数据仓库,机器学习,算法1。简介数据仓库巩固了来自组织内各种来源的数据,作为数据管理和分析的关键工具。机器学习ML的集成最近增强了这些数据仓库,从而促进了创新和竞争优势。机器学习对于云的数据仓储优化至关重要。机器学习算法可确保减少延迟,增强查询优化并轻松处理需求。这为创新创造了新的机会,因此,竞争优势[1]。
这项工作描述了一个理论框架的原则性设计,从而通过压缩来实现有限字符串的有限多组的快速准确的算法信息度量。我们方法的一个独特特征是操纵理论本身的实体和数量的重复,明确表示:压缩字符串,模型,速率延伸状态,最小的足够模型,关节和相对复杂性。这样做,一种称为Parselet的可编程的,可编程的递归数据结构本质上提供了字符串的建模,作为来自编码常规部分的有限字符串集的参数化实例的串联。这支持了这项工作的另一个独特特征,这是Occam剃须刀之外的Epicurus原理的天然实施例,以便为数据生成最重要和最明显的明确模型。该模型是通过最小变化的原理来迭代发展的,以达到所谓的最小数据模型。parselets也可用于计算有关数据的任何任意假设。提出了一个无损,限制,以压缩表示的表示,该表示可以立即重复使用磁盘上存储的昂贵计算,以便将其快速合并为我们的核心例程,以获取信息计算。进行了两种信息度量:一个是确切的,因为它纯粹是组合,而另一个可能会产生轻微的数值不准确性,因为它是最小模型的Kolmogorov复杂性的近似值。信息对称性在位级别执行。尽可能,将Parselets与实际数据上的现成压缩机进行比较。其他一些应用程序只是由Parselets启用。
getAziMuthScores。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。2 getCasrxrfScores。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3 GetCfdsCores。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。5 GetCrispraiscores。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。6 getCrispraterscores。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。7 GetCrisprScanscors。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。8 GetDeepCPF1Scores。 。 。 。 。 。 。 。8 GetDeepCPF1Scores。。。。。。。。。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>9 GetDeepShoscores。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>10 GetDeepCas9Scores。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>11 GetThpamgScores。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。。。。。。。。。。。。。。。。。。。。。。12 GetLindelsCores。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。13 GetMitscores。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。14 getRuleset1scores。。。。。。。。。。。。。。。。。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>15个DatulseT3Scores。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>16得分Mehodingfo。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>17 sgraxamplcrispra。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。。。。。。。。。。。。。。。18 sgrnaexamplecrispri。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。18 tssexamplecrispra。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。19 tssexamplecrispri。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。19
对在医疗领域的微波成像(MWI)的潜在用途(主要是由于其便携性,低成本,安全使用非电源辐射和非侵入性)的兴趣越来越大。它已被应用,例如用于乳腺癌诊断[1]和脑冲程检测[2],[3]。MWI工作原理是在微波频率下健康组织与受影响的组织之间存在介电对比度。为了解决结果不良问题,可以使用对比度倒置(CSI)方法定量重建感兴趣域(DOI)中的介电特性[4]。CSI是一种基于优化的算法,可最大程度地降低对比度和对比源变量中特殊形成的功能。在这里,CSI算法与有限元方法(FEM)求解器[5]结合起作用,该方法将整个体积分散使用,不合理且不均匀。这使我们能够建模完整的天线几何形状,包括合成环境中的同轴饲料端口[6],从而导致更现实的模拟场景。它还允许我们在反转模型中包含一个不均匀的数值背景(类似于[7],[8]中描述的过程)。尽管场数使用线性边缘元件,但最初使用脉冲基函数来表达FEMCSI的对比度和对比度的脉冲函数[9],[10]。在这里,目的是提出一种使用磁场的基础函数获得的替代离散化,也用于对比源变量。对于简化的方案,在[11]中报告了初步结果,其中标准实施[12]与提议的
摘要 - 本研究通过开发TKIP -RUB(转换键盘输入模式以识别用户行为)算法在密码更新期间将合法用户与冒险者区分开的挑战。文献综述表明,包括EPSB方法在内的现有算法在基于移动键盘输入的情况下识别用户行为的准确性有限。旨在通过回答问题来增强身份验证系统的研究:转换历史输入模式是否可以提高用户识别的准确性和可靠性?假设提出的算法将在准确性和精确度上显着优于现有方法。为了评估这一点,使用143位用户更新密码的用户的登录尝试进行了实验研究,从而产生了629个记录的数据集(486个培训,143个测试)。将TKIP-RUB算法集成到移动身份验证系统中,以分析用户行为并生成预测模式。结果表明,尽管EPSB算法的准确度达到9.091%,但TKIP-RUB算法达到53.147%,代表了五倍的提高。这证明了TKIP-RUB算法在提高识别率,安全性和积极的预测精度方面具有较高的有效性。
在过去的70年中,我们人类创造了一个经济市场,由于广告的关注,人们的注意力被吸引并转变为金钱。在过去的二十年中,网络平台利用心理学,社会学,神经科学和其他领域的研究,将关注注意力引起注意的规模带来了前所未有的规模。最初的共同目标是使目标广告更有效,注意力集中的技术及其对认知偏见和情感的使用具有多种有害的副作用,例如两极分化的意见,传播虚假信息以及威胁公共卫生,经济和民主。这显然是一种不用于共同利益的情况,实际上所有用户都成为脆弱的人群。本文汇集了从广泛学科到An-Alyze当前实践及其后果的贡献。通过一系列可以使用的命题和原则确实推动了进一步的作品,它呼吁采取针对这些实践的行动,以吸引我们在网络上的注意力,因为文明使文明在世界范围内不惩罚地浪费注意力是不可持续的。
在过去的70年中,我们人类创造了一个经济市场,由于广告的关注,人们的注意力被吸引并转变为金钱。在过去的二十年中,网络平台利用心理学,社会学,神经科学和其他领域的研究,将关注注意力引起注意的规模带来了前所未有的规模。最初的共同目标是使目标广告更有效,注意力集中的技术及其对认知偏见和情感的使用具有多种有害的副作用,例如两极分化的意见,传播虚假信息以及威胁公共卫生,经济和民主。这显然是一种不用于共同利益的情况,实际上所有用户都成为脆弱的人群。本文汇集了从广泛学科到An-Alyze当前实践及其后果的贡献。通过一系列可以使用的命题和原则确实推动了进一步的作品,它呼吁采取针对这些实践的行动,以吸引我们在网络上的注意力,因为文明使文明在世界范围内不惩罚地浪费注意力是不可持续的。
人工智能(AI)已经渗透到我们日常生活的各个方面,应用程序从推荐系统和自动驾驶汽车到个人家庭助理和教育支持系统(Kaur等,2020)不等。这些AI系统满足了我们许多个人需求,同时也影响了我们社交互动的不同领域。此外,AI技术在几个关键领域都非常有效,从而使它们能够促进亲社会行为并增强社会福利(Efthymiou&Hildebrand 2023)。首先,可以对AI进行编程,以摆脱通常影响人类判断的偏见,促进更公平,更公平的结果(Lin等,2021)。因此,AI可以有效地分配资源,最大程度地影响影响,而不会影响人类捐助者或组织的个人偏见(Landers&Behrend,2023年)。此外,AI的持续可用性和可扩展性使其非常适合解决大规模的社会挑战,例如管理灾难反应或在危机期间优化资源分配(Sun等,2020)。通过整合这些功能,不仅是AI