摘要 提出了一种使用单面单圈螺旋天线作为反射元件的圆极化宽带反射阵列。设计、仿真和测量了一个 X 波段的 11 × 11 元件反射阵列,它展示了宽带宽和大角度波束扫描性能。通过旋转偏心反射元件可获得 360 ◦ 的相位范围。全波模拟表明,在 10 GHz 的中心频率处实现了 29.1% 的 1-dB 带宽,在法向入射角(φ=0◦,θ=0◦)下最大增益为 23.9 dB,其中聚焦光束的测得增益为 23.6 dB,孔径效率为 51.7%。模拟和测试的轴比在 8.9 GHz 至 10.7 GHz 范围内小于 3 dB。此外,通过将入射角从 + 30 ◦ 变为 − 30 ◦,验证了大角度光束扫描性能
薄膜天线技术是一种非常有前途的实现大口径、轻质量、小收纳体积的方法。在过去的几十年中,有源和无源薄膜天线得到了广泛的研究,但由于面形精度保持、在轨可靠性、环境兼容性等诸多挑战,其实际星载应用很少。本文总结了星载薄膜天线的历史和最新进展,分别介绍了曲面反射器、共形有源薄膜天线、平面阵列薄膜天线和平面反射阵列薄膜天线。介绍了射频设计、展开机理、材料、实验、应用和分析方法。通过总结现有薄膜天线的优势和挑战,本文旨在展望星载薄膜天线存在的问题和未来发展趋势。
摘要:我们利用相对论量子力学来开发通用量子场论基础,适用于理解、分析和设计通用量子天线,以用于安全量子通信系统和其他应用。本文将量子天线视为能够产生我们称之为“量子辐射”的抽象源系统。我们从通用相对论框架出发,其中量子天线系统以基本量子时空场建模。在开发一个框架来解释如何使用微扰相对论量子场论 (QFT) 的方法理解量子辐射之后,我们深入研究了受控抽象源函数的量子辐射问题。我们在中性 Klein-Gordon 线性量子天线的情况下说明了该理论,概述了构建源 - 接收器量子天线系统格林函数的一般方法,后者可用于计算各种候选角量子辐射方向性和增益模式,类似于经典天线理论中的相应概念。我们预计,所提出的形式体系可能会得到扩展,以处理量子通信应用中大量其他可能的受控辐射类型,例如标量、费米子和玻色子粒子的产生,其中每种粒子都可能是无质量的,也可能是质量的。因此,我们的目标是将天线的概念扩展到电磁波之外,现在我们提出的基于 QFT 的量子天线系统概念可用于探索任何类型的相对论粒子的受控辐射场景,即通过部署新的非标准量子信息传输载体(如质量光子、自旋 1/2 粒子、引力子、反粒子、高自旋粒子等),有效地超越众所周知的光子系统的情况。
摘要 全球各地的科学家、研究人员和工程师开始重新考虑通过将设备缩小到更小尺寸来消除大尺寸设备的想法。大量资金投入到开发大尺寸天线和各种其他具有复杂形状的设备中。随之而来的成本和性能有限的问题已通过日本的折纸艺术(称为折纸)得到解决。然而,很难按照折纸概念设计设备,因为需要考虑许多参数。军事、医疗和太空计划的研究和开发正在进行中。很少有项目已经完成,其中大多数处于研究阶段。相应的软件也在研究中,并且正在为折纸设备的设计而开发。材料选择和制造过程是实现完美设备的其他挑战性步骤。医疗领域有许多类型的设备可以用折纸概念进行设计。到目前为止,只制造了少数几种,这些设备在使用前也需要获得临床批准。世界各地的军事机构都在根据折纸概念开发庇护帐篷和武器。军事部门的主要重点是设计无人机和天线。使用折纸概念的最新和完成的项目是詹姆斯·韦伯太空望远镜 (JWST),由 NASA、ESA 和 CSA 设计。该望远镜是可运输的,因为它的两个主要部件,光学元件和遮阳板都是用折纸方法设计的。遮阳板和光学元件被折叠起来以适合航天器。一旦进入运行轨道,这些设备就可以再次展开。詹姆斯·韦伯太空望远镜于 2021 年 12 月 25 日搭乘阿丽亚娜 5 号火箭开始了它的外太空探索之旅。
自诞生以来,立方体卫星就成为了太空网络和探索领域最令人兴奋的技术,因为与同类传统卫星相比,立方体卫星的成本和复杂性更低 [1]。这使得太空任务的设计和运行周期成倍加快,也增加了人们对太空领域高风险企业的激励 [2]。这些突破为私有化太空网络时代铺平了道路,例如 SpaceX Starlink 星座 [3]。要充分释放太空网络的潜力,需要更高的数据速率和高度紧凑的设备 [4]。从这个角度来看,太赫兹 (THz) 频段(从 0.1 THz 到 10 THz)是一种巨大的频谱资源,可用于开发可用于下一代立方体卫星的无线技术 [5]。 THz 波段技术非常适合立方体卫星,因为它具有可维持极高数据速率的大型连续带宽,以及 THz 频率的亚毫米波长,这自然会产生高度紧凑的设备 [6]。然而,THz 频率下非常高的路径损耗仍然是电磁 (EM) 频谱这一部分未被充分利用的关键原因。一方面,THz 频率会因与特定频率下的某些气体分子(主要是水蒸气)的共振峰而遭受吸收损耗 [7]。尽管如此,如 [8] 中详细讨论的那样。太空中没有大气介质,因此吸收损耗减少,使 THz 波段成为卫星间通信链路的理想选择。同时,由于低地球轨道 (LEO) 内的大气存在减少,可以通过适当选择避免这些吸收峰的设计频率来减轻上行链路和下行链路期间的吸收损耗。另一方面,THz 频率的波长非常小,导致
本文介绍了用于 5G 端射应用的 SICL 馈电宽带 MIMO 天线阵列。阵列中的辐射元件是一种改进的偶极天线,倾斜 ±45 度,以避免阵列配置中连续元件之间的重叠。一个臂放在顶部,而另一个臂放在底部基板上,分别由 SICL 线的顶部和中间板(使用馈电通孔)馈电。偶极天线臂的上下排列使阵列尺寸更加紧凑。SICL 技术的另一个优势是,当一个端口被激励时,可以减少另一个端口的耦合,从而使用 SICL 实现高隔离度。建议采用四元件 MIMO 天线阵列实现 360 度方位覆盖,增益为 6 dBi,阻抗带宽为 5.6 GHz,28 GHz 时交叉极化水平低于 13.6 dB。
摘要 多功能、可部署和可打包天线对于许多应用都非常重要,包括无人机、卫星通信(例如立方体卫星)和通用机载和星载通信系统。值得注意的是,这种天线为上述应用提供了新功能。在本文中,我们介绍了关于可折叠和物理可重构天线的新兴研究,这些天线可以改变其形状以适应和重新配置其电磁性能(例如工作频率、带宽、极化、波束宽度等)。 1. 简介 可重构、可调、多功能、可部署的天线系统已广泛用于支持无线通信系统的多种服务。电气和机械重构方法已经得到开发并应用于机载和星载系统的各种应用,例如通信、侦察、传感和能量收集 [1],[2]。最近推出的一类新的物理可重构天线是折纸天线 [3]。与传统天线相比,折纸天线具有独特的优势,例如性能可重构、可调性和高效存放。它们固有的电磁和机械多功能行为使它们适合便携式军事和太空应用,这些应用对空间要求严格(例如,小型卫星平台的空间限制)。此外,折纸天线变形的能力使得开发具有前所未有和变革性能力的新型电磁 (EM) 系统成为可能,例如:(a) 天线可以改变其几何形状,以根据时间调整其性能并实现多功能性,(b) 2-D 和 3-D 天线阵列可以改变其覆盖面积、形状和/或元件分离,以实现最佳波束成形、波束控制和扫描范围,以及 (c) 可重构频率选择表面可以改变其性能以支持可调和多功能天线和阵列的操作(见图 1)。[4] 中可以找到有关折纸天线和可展开电磁结构的最新评论。
交付给美国政府,并享有无限权利,定义见 DFARS 第 252.227-7013 或 7014 部分(2014 年 2 月)。尽管有任何版权声明,美国政府对本作品的权利定义见上文 DFARS 252.227-7013 或 DFARS 252.227-7014。以美国政府未明确授权的方式使用本作品可能会侵犯本作品中的任何版权。
makrolon®在任何激光雷达系统的工作范围内显示出高度稳定的折射率。对于驱动器监控系统,操作的波长范围可能高于900 nm,或者对于基于激光的长距离激光雷达系统的905 nm或1550 nm。作为
摘要本文在222-270 GHz的气体光谱中介绍了带有Bowtie-Antenna和硅透镜的发射器(TX)和一个接收器(RX),它们是在IHP的0.13 µM SIGE BICMOS技术中制造的。TX和RX使用两个集成的本地振荡器,用于222 - 256 GHz和250 - 270 GHz,可用于双波段操作。由于其大约27 dbi的定向性,带有硅透镜的单个集成的Bowtie-Antenna可以使TX的EIRP约为25 dbm,因此与先前报道的系统相比,2频段TX的EIRP更高。通过Y因子方法测量的Rx的双边噪声温度为20,000 K(18.5 dB噪声图)。气态甲醇的吸收光谱被用作用TX-和RX模块的气体光谱系统性能的量度。