引言侵入性真菌感染对于受损系统受损的人,包括癌症患者(例如白血病,淋巴瘤)以及固体器官和造血干细胞移植受者,这是可怕的并发症。真菌病原曲霉属。引起多种疾病,包括哮喘,慢性感染和侵入性疾病。侵入性真菌感染仍具有升高的死亡率(1-4),这表明先天免疫系统是针对这些破坏性感染的第一道防线(5,6)。作为真菌感染的第一反应者,中性粒细胞通过多种效应子功能发挥抗真菌活性,包括蜂群,吞噬作用和活性氧(ROS)产生。激活中性粒细胞模式识别受体会触发这些效应子功能和随后的细胞因子分泌。然而,在许多免疫抑制的个体中,产生嗜中性粒细胞或中性粒细胞功能障碍的能力降低,导致侵入性真菌感染的风险升高,包括浸润性曲霉病。酪氨酸激酶对抗真菌免疫中的中性粒细胞效应功能至关重要(7-9)。曲霉细胞壁碳水化合物通过脾酪氨酸激酶(SYK)触发细胞内信号传导和效应子功能(10,11)。Bruton的酪氨酸激酶(BTK),一种Syk的激酶向下流,介导了包括嗜中性粒细胞在内的先天免疫细胞中的抗真菌反应(12)。这些激酶在抗真菌免疫中至关重要,但针对这些分子的小分子抑制剂是B细胞恶性肿瘤和慢性移植物抗宿主病的有效疗法(13-16)。
抽象的曲霉曲霉被认为是负责引起疾病并损害食物和饲料商品的真菌之一。这种真菌能够产生对人和动物都有有毒特性的霉菌毒素。A. flavus的污染跨越了广泛的范围,从田间种植开始,一直延伸到存储设施。一种管理这种真菌的替代方法涉及其增长环境的修改。微生物固有地具有最低水活性(W)对其代谢过程至关重要的价值。这项研究的目的是修改A W值以抑制A. flavus的生长。这项研究是使用补充甘油和蒸馏水的PDA培养基在体外进行的,以建立0.90、0.92、0.95和0.97的W条件。在孵化后的第七天,结果表明,对于0.90,a表现出对氟曲霉生长的显着抑制作用,平均菌落直径为1.34 mm,其次是0.92,然后0.92为1.54,然后0.95为1.83 mm,0.97为1.97 mm。相反,使用0.90的治疗显示最低的抑制作用(1.34 mm),0.97的抑制作用显示最高(1.84 mm)。所有改良的水活性处理都对黄曲霉的生长产生了影响。随着A W值的降低,A. flavus的生长变得越来越受到限制。关键字:曲曲霉,水活动(A W),菌落直径
图4。AFUPMV-1M感染的A. fumigatus的蛋白质组改变了。在生理和氧化应激条件下,使用质谱法(MS)表征了Fumigatus AF293和环己酰亚胺病毒(VC)的蛋白质含量。a。通过其存在/不存在鉴定蛋白的分布。只有每组3个三分之一(n = 3)中出现的蛋白质出现在最终列表中。b。通过方差分析(ANOVA)的未校正值<0.05(ANOVA),总共有117种蛋白质在菌株和生长条件下具有差异性丰富。c。在对照条件下以及通过QRT-PCR分析的对照条件下以及氧化挑战(5 mM H 2 O 2,4H)下,AF293与VC和RI的相对mRNA水平。分析的基因:BRF1,pol III transcranced Genes:U6 snRNA(U6),tRNA-arg(arg),tRNA-phe(phe)和tRNA-phe(phe)和tRNA-tyr(tyr),pol i-pol i-transciped procyclin(proc)。数据是平均 + s.e.m.,n = 3。** = 0.0085,*** = 0.0002,**** <0.0001。d。通过QRT-PCR分析,AF293与VC和RI的相对MIS6水平相对于VC和RI(5 mM H 2 O 2,4H)。数据是平均 + s.e.m,n = 3。e。 5天后,在使用10 mM羟基脲的固体GMM培养基上抑制生长。gmm用作对照。f-g。有丝分裂测定。分生孢子5小时,然后在指定的时间段内在YG培养基中再次洗涤并再次孵育。**** <0.0001。通过Hoechst染色和光学显微镜评估每个分生孢子(F)和分生孢子直径(G)中核的数量(每次重复计数50种生殖,这是三个独立实验±SD的平均值)。分生孢子悬浮液,以说明每个实验之前的分生孢子生存力差异。
这项研究涵盖了对曲木曲霉抗花生抗性的现有文献的评论,并探讨了操纵易感基因作为抗性繁殖策略的潜力。花生(Arachis hypogaea l。)在世界上最重要的油料种子作物中排名。然而,由真菌病原体曲霉素flavus引起的黄曲霉毒素污染严重阻碍了花生生产的盈利能力和安全性。为了解决这个问题,本文始于专门针对病原体的一章,涵盖了诸如A. flavus生命周期,致病性,影响其生长的因素和黄曲霉毒素污染的因素以及建议的控制策略。到目前为止,疾病管理和黄曲霉毒素控制的传统方法表现出有限的成功。它具有专门针对病原体基因组调节的部分,包括黄曲霉毒素生物合成的调节。
丝状真菌黑曲霉因其高蛋白质分泌能力而闻名,是同源和异源蛋白质生产的首选宿主。为了进一步提高黑曲霉的蛋白质生产能力,我们制备了一组专用的蛋白质生产菌株,其在基因组的预定位置包含多达 10 个葡糖淀粉酶着陆位点 (GLS)。这些 GLS 取代了编码大量存在或编码不需要的功能的酶的基因。每个 GLS 都包含葡糖淀粉酶基因 (glaA) 的启动子和终止子区域,该基因是黑曲霉中表达最高的基因之一。整合多个基因拷贝(通常通过随机整合实现)可提高蛋白质产量。在我们的方法中,GLS 允许使用 CRISPR/Cas9 介导的基因组编辑快速进行靶向基因替换。通过在每个 GLS 中引入相同或不同的独特 DNA 序列(称为 KORE 序列)并设计 Cas9 兼容的单向导 RNA,人们能够选择目标基因在哪个 GLS 整合。通过这种方式,可以轻松快速地制备一组具有不同目的基因拷贝数的相同菌株,以比较蛋白质生产水平。为了说明其潜力,我们成功地利用表达平台生成多拷贝 A. niger 菌株,该菌株产生 Penicillium expansum PatE::6xHis 蛋白,催化棒曲霉素生物合成的最后一步。表达 10 个拷贝 patE::6xHis 表达盒的 A. niger 菌株在培养基中产生约 70 lg mL 1 PatE 蛋白,纯度略低于 90%。
1 阿卜杜勒阿齐兹国王大学药学院天然产物系,吉达 21589,沙特阿拉伯;nhamadaelshoubaki@stu.kau.edu.sa(NMA);melfaky@kau.edu.sa(MAE);aekoshak@kau.edu.sa(AEK)2 阿卜杜勒阿齐兹国王大学精准医学人工智能中心,吉达 21589,沙特阿拉伯 3 阿卜杜勒阿齐兹国王大学药学院药物化学系,吉达 21589,沙特阿拉伯;maaalharbi1@kau.edu.sa 4 加拉拉大学药学院生药学系,新加拉拉 43713,埃及; reda.fouad@gu.edu.eg 5 苏伊士运河大学药学院生药学系,埃及伊斯梅利亚 41522 6 苏伊士运河大学药学院药物化学系,埃及伊斯梅利亚 41522 * 通讯地址:ssahmed@kau.edu.sa (SSE);khaled_darwish@pharm.suez.edu.eg (KMD);电话:+966-544-512-552 (SSE);+20-100-5330-114 (KMD)
由于由抗真菌抗药性抗药性菌株引起的新兴生命威胁性真菌感染,因此迫切需要制定新的治疗策略,应用抗真菌化合物,这些化合物与化学特征和作用机理中的现有抗真菌化合物不同(Kainz等,2020)。除了针对真菌细胞壁的新型化学疗法,细胞膜和细胞内靶标(Rauseo等,2020),天然和合成抗真菌肽(Fern Andez de Ullivarri等,2020)和蛋白质(AFPS)和蛋白质(AFPS)代表其他药物候选者;其中,丝状真菌起源的Neosartorya(Aspergillus)Fischeri抗真菌蛋白2(NFAP2)(Galg Oczy等,2019)。nFAP2抑制了机会性人类病原体念珠菌物种的生长,并单独消除其耐药性生物膜或与许可的抗真菌药物的协同组合(Kov Acs等,2021; T oth等,2018)。NAFP2在鼠外阴阴道念珠菌模型中的实验确定的功效(Kov ACS等,2019),以及三维人类皮肤模型(Holzknecht等,2022)已经支持其在安全治疗中的治疗潜力(抗真菌药物抗药性)表Lastric Fungal Infections。考虑到这些功能,NFAP2被认为是有希望的
背景:通常需要进行组织病理学鉴定,因为真菌培养的敏感性不足以进行准确诊断。另一方面,病理诊断,尤其是霉菌的病理诊断,即使由经验丰富的病理学家进行,也常常不准确。在区分毛霉菌病和曲霉病时尤其如此,这两种病有不同的药物选择和医疗管理。根据潜在疾病的严重程度或诱发因素,疾病很容易在短时间内变得严重。因此,正确的诊断极其重要,应委托给病理学家。目的:开发一种基于人工智能 (AI) 的霉菌感染自动组织学诊断系统,以支持一般病理学家的诊断,特别是区分曲霉菌和毛霉菌。方法:我们使用两个指标作为诊断系统;即独立菌丝的角度和每个菌丝的曲折度。结果和结论:我们分别从曲霉病和毛霉菌病的标准病例中收集了 147 个和 67 个图像样本。所有图像均通过自动识别两种指标成功分析。数据二维图生成的阈值曲线划分的独立区域清楚地包括了从曲霉菌和毛霉目病例中获得的测试数据。本研究证明了我们新开发的基于人工智能的诊断系统的实用性。其实际应用还需要进一步研究。关键词:人工智能方法、曲霉菌、侵袭性霉菌感染、毛霉目、Python