摘要 8 神经群体动态受许多细胞、突触和网络特性的影响。不仅要了解电路参数的协调变化如何改变神经活动,而且要了解动态何时不受此类变化的影响或对此类变化保持不变。计算建模揭示了单个神经元和小电路中的不变性,这些不变性被认为反映了它们对变化和扰动的鲁棒性。然而,将这些见解推广到皮层和其他大脑区域的较大电路仍然具有挑战性。一个关键的瓶颈在于使用脉冲网络模型对神经回路进行逆向建模,即识别与神经记录中观察到的动态定量匹配的参数配置。在这里,我们提出了神经动力学自动模型推断 (AutoMIND),以有效发现不变的电路模型配置。 AutoMIND 利用具有自适应 16 脉冲神经元和群集连接的机械模型,该模型显示了丰富的时空动态。概率 17 深度生成模型(仅在网络模拟上训练)然后返回与给定目标神经活动观察一致的许多参数配置。应用于多个数据集后,AutoMIND 发现了人类大脑类器官在早期发育过程中同步网络爆发的电路模型 19,以及捕捉小鼠海马和皮层中神经像素记录的复杂频率曲线的模型 20。在每种情况下,我们都获得了 21 数百种配置,这些配置组成一个(非线性)参数子空间,其中种群动态保持不变 22。令人惊讶的是,不变子空间的全局和局部几何形状并不固定,而是因不同的动态而异 23。总之,我们的研究结果揭示了不同 24 种群体动态背后的电路参数的动态相关不变性,同时展示了 AutoMIND 在神经电路逆向建模方面的灵活性。25
摘要8神经种群动力学由许多细胞,突触和网络特性塑造。不仅要9了解电路参数的协调变化如何改变神经活动,而且当动态不受影响的情况下,或不变的变化时,也很重要。计算建模揭示了单个神经元和小11个电路中的不变,这些电路被认为反映了它们对可变性和扰动的稳健性。但是,将这12个见解概括为皮质和其他大脑区域的较大电路仍然具有挑战性。一个关键的瓶颈在于具有尖峰网络模型的13个神经回路的反向建模,即识别量化对动力学14在神经记录中观察到的动力学14的参数配置。在这里,我们提出了从神经动力学(Automind)的自动化模型推断,以有效发现不变电路模型配置。自动源具有自适应16个尖峰神经元和聚类连接性的机械模型,该模型显示出丰富的时空动力学。概率17深生成模型(仅在网络模拟上进行训练),然后返回许多参数配置,一致18,具有给定的神经活动目标观察。应用于几个数据集,Automind发现了早期发育中人类脑类器官中同步网络爆发的电路模型19,以及捕获小鼠海马和皮质中神经偶像记录的20个复杂频率曲线的模型。在每种情况下,我们都会获得21个组成(非线性)参数子空间的配置,其中人口动态保持22不变。令人惊讶的是,不变子空间的全局和局部几何形状并不固定,但在不同的23个动态方面有所不同。一起,我们的结果阐明了24个种群动态的基础电路参数的动态依赖性不向导,同时证明了自动源对神经回路的反向建模的灵活性。25
