摘要8神经种群动力学由许多细胞,突触和网络特性塑造。不仅要9了解电路参数的协调变化如何改变神经活动,而且当动态不受影响的情况下,或不变的变化时,也很重要。计算建模揭示了单个神经元和小11个电路中的不变,这些电路被认为反映了它们对可变性和扰动的稳健性。但是,将这12个见解概括为皮质和其他大脑区域的较大电路仍然具有挑战性。一个关键的瓶颈在于具有尖峰网络模型的13个神经回路的反向建模,即识别量化对动力学14在神经记录中观察到的动力学14的参数配置。在这里,我们提出了从神经动力学(Automind)的自动化模型推断,以有效发现不变电路模型配置。自动源具有自适应16个尖峰神经元和聚类连接性的机械模型,该模型显示出丰富的时空动力学。概率17深生成模型(仅在网络模拟上进行训练),然后返回许多参数配置,一致18,具有给定的神经活动目标观察。应用于几个数据集,Automind发现了早期发育中人类脑类器官中同步网络爆发的电路模型19,以及捕获小鼠海马和皮质中神经偶像记录的20个复杂频率曲线的模型。在每种情况下,我们都会获得21个组成(非线性)参数子空间的配置,其中人口动态保持22不变。令人惊讶的是,不变子空间的全局和局部几何形状并不固定,但在不同的23个动态方面有所不同。一起,我们的结果阐明了24个种群动态的基础电路参数的动态依赖性不向导,同时证明了自动源对神经回路的反向建模的灵活性。25
主要关键词