程序性知识是执行某些任务所需的知识,是专业知识的重要组成部分。程序性知识的主要来源是自然语言指令。虽然这些可读的指令是人类有用的学习资源,但它们无法被机器解释。由于其在过程自动化中的潜在应用,从指令中自动获取机器可解释格式的程序性知识已成为一个越来越受欢迎的研究课题。然而,它还没有得到充分解决。本文介绍了一种方法和一个实现的系统,以帮助用户自动从指令中获取结构化形式的程序性知识。我们引入了一种用于分析指令的程序的通用语义表示,使用该表示,自然语言技术可以自动从指令中提取结构化程序。在三个领域对该方法进行了评估,以证明所提出的语义表示的通用性以及实现的自动系统的有效性。关键词:程序性知识,信息提取,指导性文本
摘要 - 自治车辆(AVS)正在迅速前进,其中4级AVS已经在现实世界中运行。curland Avs仍然落后于人类驾驶员的适应性和表现,通常表现出过度保守的行为,偶尔违反交通法律。现有的解决方案(例如运行时执行)通过自动修复运行时的AV计划轨迹来减轻这种情况,但是这种方法缺乏透明度,应该是最后一个度假胜地的度量。,优先选择AV修复是概括超出特定事件并为用户解释的。在这项工作中,我们提出了Fix d Rive,该框架分析了违反违法行为或法律行为的驾驶记录,以产生AV驾驶策略维修,以减少再次发生此类事件的机会。这些维修是用µ驱动器捕获的,µ驱动器是一种高级域特异性语言,用于针对基于事件的触发器指定驾驶行为。为最先进的自主驾驶系统Apollo实施,Fi d rive识别和可视化驾驶记录中的关键时刻,然后使用零射门学习的多模式大语言模型(MLLM)来生成µ驱动程序。我们在各种基准方案上测试了F IX D Rive,并发现生成的维修改善了AV的性能,相对于以下交通法律,避免碰撞并成功到达目的地。此外,在实践中,修复AV(15分钟的离线分析和0.08美元)的直接成本在实践中是合理的。索引术语 - 自主车辆,自动驾驶系统,多模式大型语言模型,驾驶合规性
Wittmann Group Wittmann Group是全球领先的注射成型制造商,机器人和辅助设备,用于处理各种可增塑材料 - 包括塑料和非塑料。该集团的总部设在奥地利维也纳,由两个主要部门组成:Wittmann Battenfeld和Wittmann。遵循环境保护原则,资源和循环经济的保护,Wittmann集团从事最先进的工艺技术,以最大程度地进行注射霉菌的能源效率,以及处理具有较高含量的可回收和可再生原材料的标准材料和材料。Wittmann组的产品被签署为水平和垂直整合到智能工厂中,并且可以相互联系以形成智能生产单元。该集团的公司在六个国家共同运营十个生产工厂,在全球所有主要的工业市场中都存在36个不同地点的其他销售公司。Wittmann Battenfeld追求作为注塑机器的制造商和模块化设计中综合现代机器技术的供应商的持续增强其市场位置。Wittmann的产品范围包括机器人和自动化系统,材料处理系统,干衣机,压力指标和体积搅拌器,颗粒机,温度控制器和冷水机。联系人:Wittmann Technology GmbH Lichtblaustrasse 10 1220 Vienna Austria Tel。:+43 1 250 39-0 info.at@wittmann-group.com Wittmann Battenfeld Deutschland Gmbh AM Tower 2 90475纽伦堡德国电话。Wittmann Group enbles的伞下各个区域的组合完美整合 - 为了使注入成型处理器的优势,对加工机,自动化和辅助的无缝互锁的需求不断增长。:+49 9128 7099-0 info.de@wittmann-group.com www.wittmann-group.com
本文介绍了闭环太阳能跟踪系统的设计和实现。随着对电能的需求不断增长以及燃料消耗引起的环境污染不断增加,对清洁能源的需求也随之增加。在这些能源中,太阳能被认为是最可行的,因为它在不同环境中广泛可用且易于操作。本研究的主要目的是通过设计高效且低成本的太阳能跟踪系统来最大限度地提高光伏发电量并减少二氧化碳排放。设计和构建了对齐的闭环太阳能跟踪器以实现最佳精度。所提出的系统在运动方面表现出更大的自由度,以克服与框架支架倾斜相关的问题。使用基于 Flowcode 编程语言的 PIC 微控制器,使用光传感器检测位置反馈,并使用 H 桥驱动器控制两个直流电机。根据实验结果,与固定式太阳跟踪系统相比,所提出的系统效率有显著提高。
智能技术系统(ITS)的开发需要高级方法,以满足不断增长的系统复杂性和各种利益相关者要求的种类。基于模型的系统工程(MBSE)已被证明是一种有前途的开发方法,可以应对不断增长的系统复杂性和提高企业敏捷性(Friedenthal 2023)。通常,系统工程(SE)致力于开发整体解决方案和集成系统组件以满足客户需求和功能(Hitchins 2007)。se首先定义系统要求,然后设计系统元素,合成和复杂系统验证(Walden 2023)。MBSE是基于文档的SE的扩展,其中有关系统的信息在系统模型中被形式化。这种以模型为中心的方法可以为跨学科系统开发所需的一致且可追溯的系统设计(Friedenthal 2023)。系统模型有助于更深入地了解系统需求与系统新兴属性,内部结构和行为之间的联系。建模使整合易于管理的不同观点的复杂性。系统模型是在研讨会中设计的,其中随后将模型数字化,或者使用建模工具直接以数字形式进行数字化(Tschirner 2016)。正式的建模语言,例如Sysml(Delligatti 2014),用于以正式的方式捕获系统设计。
域模型采集已被确定为计划技术的应用,尤其是在叙事计划中的瓶颈。以自动化的方式从叙事文本中学习动作模型对于克服这种障碍,但由于此类文本的固有复杂性而具有挑战性至关重要。我们使用我们完全自动化的,无监督的系统Naruto介绍了从叙事文本得出的计划域模式的评估。我们的系统结合了结构事件提取,常识事件的预测以及文本矛盾和相似性。评估结果表明,火影忍者生成的域模型比现有的完全自动化的甲基动物更高,甚至有时与在人为援助的情况下与半自动化方法创建的域相提并论。
第一部分。准备RHEL安装以准备RHEL安装环境的基本步骤,以满足系统的要求,支持的体系结构,并为安装媒体提供自定义选项。此外,它涵盖了用于创建可引导安装媒体,设置基于网络的存储库以及配置UEFI HTTP或PXE安装源的方法。指南。
摘要:科学知识传统上是通过在期刊、会议论文集和在线档案中发表的研究文章来传播和保存的。然而,这种以文章为中心的范式经常受到批评,因为它不能自动处理、分类和推理这些知识。另一种愿景是生成语义丰富、相互关联的研究出版物内容描述。在本文中,我们提出了人工智能知识图谱 (AI-KG),这是一个自动生成的大规模知识图谱,描述了 820K 个研究实体。AI-KG 包含从 333K 个人工智能领域的研究出版物中提取的大约 14M 个 RDF 三元组和 1.2M 个具体化语句,并描述了由 27 种关系链接的 5 种类型的实体(任务、方法、指标、材料、其他)。 AI-KG 旨在支持各种智能服务,用于分析和理解研究动态、支持研究人员的日常工作以及帮助资助机构和研究政策制定者做出决策。AI-KG 是通过应用自动管道生成的,该管道使用三种工具提取实体和关系:DyGIE++、Stanford CoreNLP 和 CSO Classifier。然后,它使用深度学习和语义技术的组合来集成和过滤生成的三元组,以生成高质量的知识图谱。该管道根据手工制作的黄金标准进行了评估,获得了具有竞争力的结果。AI-KG 在 CC BY 4.0 下可用,可以作为转储下载或通过 SPARQL 端点查询。
摘要:跟踪飞机与降落伞在空投试验中起着至关重要的作用。研究降落伞的打开状态和飞行轨迹是十分必要的。如何高效准确地获取降落伞的形变数据和轨迹数据,越来越多的学者开始研究。目前,实际的数据采集主要由实验人员手持高清高速摄像机对降落伞进行跟踪拍摄,获得降落伞在空投过程中的图像序列。但这些方法无法获得降落伞的飞行轨迹,且易受人为因素的干扰。本文设计了一种智能转台伺服系统TuSeSy,可自动跟踪空投试验中的飞机与降落伞。具体来说,TuSeSy根据实际拍摄图像与跟踪算法推断图像之间的差异生成控制命令(从而真正跟踪目标)。此外,我们提出了一种有效的基于图像帧差异和光流的多目标跟踪切换算法,实现了空投试验中从飞机到降落伞的实时切换。为了评估TuSeSy的性能,我们进行了大量实验;实验结果表明,TuSeSy不仅解决了错误目标跟踪的问题,而且还降低了计算开销。此外,与其他跟踪切换方法相比,多目标跟踪切换算法具有更高的计算效率和可靠性,确保了转台伺服系统的实际应用。
摘要:空投试验中飞机与降落伞的跟踪至关重要,需要研究降落伞的打开状态和飞行轨迹,如何高效准确地获取降落伞的形变数据和轨迹数据成为越来越多学者的研究方向。目前实际的数据采集主要由实验人员手持高清高速摄像机对降落伞进行跟踪拍摄,获得空投过程中降落伞的图像序列,但这些方法无法获得降落伞的运动轨迹,且易受人为因素的干扰。本文设计了TuSeSy智能转台伺服系统,可自动跟踪空投试验中的飞机与降落伞,具体而言,TuSeSy根据实际拍摄图像与跟踪算法推断图像的差异生成控制指令(从而真正跟踪目标)。此外,我们提出了一种基于图像帧差和光流的有效多目标跟踪切换算法,实现了空投试验中从飞机到降落伞的实时切换。为了评估TuSeSy的性能,我们进行了大量的实验;实验结果表明,TuSeSy不仅解决了错误目标跟踪的问题,而且还降低了计算开销。此外,与其他跟踪切换方法相比,多目标跟踪切换算法具有更高的计算效率和可靠性,确保了转台伺服系统的实际应用。