电流型整流器需附加重叠时间,重叠时间会产生重叠电流,造成输入电流畸变。本研究通过对比增加重叠时间前后交流侧电流来说明重叠时间的影响。讨论了三角载波、正向载波、负向载波等不同调制载波下重叠时间引起的重叠电流分布。基于傅里叶分析,建立了交流侧电流多余谐波与重叠时间的定量关系。在换向分析的基础上,提出了一种能抑制重叠电流的新型载波调制方案。搭建了一台3 kW样机,验证了重叠时间影响及所提抑制调制方案的有效性。
美国国家运输安全委员会。2014 年。辅助动力装置电池起火,日本航空波音 787-8,JA829J,马萨诸塞州波士顿,2013 年 1 月 7 日。NTSB/AIR-14/01。华盛顿特区。摘要:本报告讨论了 2013 年 1 月 7 日发生的一起事故,事故涉及一架停在马萨诸塞州波士顿爱德华·劳伦斯·洛根将军国际机场登机口的日本航空波音 787-8 JA8297,当时维修人员发现辅助动力装置电池盒盖冒出烟雾,并且电池盒前部的电连接器处有两个不同的火焰。当时飞机上没有乘客或机组人员,机上的维修或清洁人员均未受伤。安全问题涉及电池内部短路和一个或多个电池单元热失控的可能性、火灾、爆炸和易燃电解质泄漏;电池制造缺陷和电池制造过程的监督;大型锂离子电池的热管理;制造商在确定和证明安全评估中的关键假设时缺乏足够的指导;联邦航空管理局 (FAA) 认证工程师在型号认证过程中缺乏足够的指导以确保符合适用要求;787 增强型机载飞行记录器的飞行数据过时且音频记录质量差。安全建议已解决
传统上,辅助电池通过两端辅助电池开关连接到车辆的底盘电池,从而使车辆充电辅助电池,同时防止辅助设备排放机箱电池。由于辅助负载直接连接到辅助电池,因此辅助电池可能会因负载过度排放,从而降低了电池寿命。
传感器融合一直是数据分析及其应用领域的焦点话题之一。个体传感信息通常用于揭示底层过程动态并识别其中的潜在变化。这些系统通常配备有(可能)不同模态的多个传感器。这些问题表明需要融合分布式和异构信息,以便实时准确推断关键系统的状态。为此,本文开发并验证了分布式物理过程(例如,船上辅助系统)中的故障检测和分类方法。文献中提出了几种传感器融合方法来解决故障检测问题,包括线性和非线性滤波器、自适应模型参考方法和基于神经网络的估计方案。然而,据作者所知,这些技术尚未应用于船载系统,因为存在一些固有的困难,包括:(可能)信号的非平稳行为、过程动态的潜在非线性、输入输出和反馈相互作用、多模态数据的缩放和对齐以及乘性过程噪声。上述一些问题可以在一定程度上简化或通过更简单的解决方案来近似。示例包括线性和线性化建模和贝叶斯估计技术(例如扩展卡尔曼滤波和粒子滤波)
传感器融合一直是数据分析及其应用的重点主题之一。个体传感信息通常用于揭示潜在的过程动态并识别其中的潜在变化。这些系统通常配备具有(可能)不同模态的多个传感器。这些问题表明需要融合分布式和异构信息,以便实时准确推断关键系统的状态。为此,本文开发并验证了分布式物理过程(例如,船上辅助系统)中的故障检测和分类方法。文献中提出了几种传感器融合方法来解决故障检测问题,包括线性和非线性滤波器、自适应模型参考方法和基于神经网络的估计方案。然而,据作者所知,这些技术尚未应用于船上系统,因为存在一些固有的困难,包括:(可能)信号的非平稳行为、过程动态的潜在非线性、输入输出和反馈相互作用、多模态数据的缩放和对齐以及乘性过程噪声。上述一些问题可以在一定程度上简化或通过更简单的解决方案来近似。例如线性和线性化建模和贝叶斯估计技术(例如扩展卡尔曼滤波和粒子滤波)[1][2]。研究人员还使用了软计算
传感器融合一直是数据分析及其应用的重点主题之一。个体传感信息通常用于揭示潜在的过程动态并识别其中的潜在变化。这些系统通常配备具有(可能)不同模态的多个传感器。这些问题表明需要融合分布式和异构信息,以便实时准确推断关键系统的状态。为此,本文开发并验证了分布式物理过程(例如,船上辅助系统)中的故障检测和分类方法。文献中提出了几种传感器融合方法来解决故障检测问题,包括线性和非线性滤波器、自适应模型参考方法和基于神经网络的估计方案。然而,据作者所知,这些技术尚未应用于船上系统,因为存在一些固有的困难,包括:(可能)信号的非平稳行为、过程动态的潜在非线性、输入输出和反馈相互作用、多模态数据的缩放和对齐以及乘性过程噪声。上述一些问题可以在一定程度上简化或通过更简单的解决方案来近似。例如线性和线性化建模和贝叶斯估计技术(例如扩展卡尔曼滤波和粒子滤波)[1][2]。研究人员还使用了软计算
需求是由于粘合材料不良,非平板粘合表面,奇数包装情况还是仅仅是由于对高可靠性的需求;通过正确使用辅助电线,通常可以大大提高线键互连的完整性。辅助电线定义为安全线,安全凸起或隔离针迹(又称凸起的针迹)。旧的待命安全线已经成为一项资产已有几十年了,但是,这被安全颠簸所取代,安全性需要较小的第二键终止区域。此外,僵持针迹(SOS)具有更多的应用程序,并且还具有许多侧面好处,可以将其纳入电路设计中,以获得更好的电线强度性能,更少的互连(死于死亡结合)和较低的环路。隔离针键键合涉及将球碰撞放置在电线互连的一端,然后将电线与另一个球放在互连的另一端,并在先前放置的球碰撞上缝线。这会导致几乎均匀的针键键互连到颠簸,并具有固有的针键键拉力强度的改善。SOS的另一种用途是反向键(在模具键垫上的颠簸上的针键键),通常会导致比标准前向线环的较低的环轮廓,并且环路更强,因为电线尚未在球上方退火(在热影响的区域)。实施SOS的主要障碍是视觉检查员的重新培训和质量部门的批准。
中尉指挥官(加拿大军队)英国国防部(MoD) - 国防装备与支持(DE&S)船舶动力与推进系统综合项目团队(MPPS IPT)英国布里斯托尔
行政历史 为了应对苏联对北美发动核攻击的威胁,美国政府在 20 世纪 50 年代将大陆防空列为重中之重。1952 年,美国空军与位于伊利诺伊州的西部电气公司签订了“CORRODE 项目”合同。该公司在北部设计并测试了两个原型雷达和通信站,勘测了一条横跨加拿大北极的可行远程预警线,并为剩余的 DEW 线站推荐了具体位置。