在过去的二十年中,Gan Hemts(高电子迁移率晶体管)已证明其超过硅电源器件限制的高潜力。然而,基于GAN的侧向下摆遭受了几个突出的问题,例如电子捕获和相关的设备可靠性,这是由于闸门边缘处的尖峰电场以及没有雪崩效应。此外,较高的击穿电压需要增加门才能排出距离,从而导致不需要的大设备尺寸。这就是为什么垂直GAN Power设备越来越引起人们的兴趣和社区的强烈努力的原因。的确,高击穿电压,雪崩能力,具有高电流扩展的电场管理和小型设备足迹是垂直电源设备的一些主要优势。如果在硅底物上生长,则可以大大降低整体成本。在这项工作中,我们演示了具有高性能和线性击穿电压缩放的准垂直gan-on-si销钉二极管,并具有漂移层的厚度。完全垂直销钉二极管也被制造出了相似的崩溃场,甚至可能降低了反抗性的罗恩。
致谢。作者谨感谢与奥地利洪流和雪崩控制服务局 (WLV)、上奥地利州分局(特别是 Wolfgang Gasperl 和 Harald Gruber)以及 Centro Servizi di Geoingegneria、Ricaldone(意大利)和 ZT Büro Moser/Jaritz、Gmunden(奥地利)的出色合作。地球物理测量得到了 FP7 项目“SafeLand – 与欧洲的山体滑坡风险共存”的支持,该项目持续了 20 年
1乌特雷希特大学,物理地理系,普林斯顿Laan 8a,乌特雷希特,荷兰2 Fathom,布里斯托尔,英国布里斯托尔3雪研究所3和瓦尔兰奇研究所SLF,达沃斯·多尔夫,瑞士4 4瑞士多夫(Dorf),荷兰乌得勒支(Utrecht
2.1 IIUTROUCTION ............................................................................................................ ,。 。 2.2.1隧道离子ionrzatron ................................................................................................................................................................................................................................................................................................................. 7 7 ............................................................................................................................................................................................................................................... ,。,.... ,。 ............................................................................................................................................................................................................................................................................................................................................................................................................................................. .............................................................................................................................................................................................................................................................................................................2.1 IIUTROUCTION ............................................................................................................,。 。 2.2.1隧道离子ionrzatron ................................................................................................................................................................................................................................................................................................................. 7 7 ............................................................................................................................................................................................................................................... ,。,.... ,。 ............................................................................................................................................................................................................................................................................................................................................................................................................................................. .............................................................................................................................................................................................................................................................................................................,。。2.2.1隧道离子ionrzatron ................................................................................................................................................................................................................................................................................................................. 7 7 ...............................................................................................................................................................................................................................................,。,....,。 ............................................................................................................................................................................................................................................................................................................................................................................................................................................. .............................................................................................................................................................................................................................................................................................................,。
摘要 本文研究了商用平面和沟槽 1.2 kV 4H-SiC MOFSET 在重复非钳位电感开关 (UIS) 和短路 (SC) 应力下的可靠性。观察到器件特性的退化,包括传输特性、漏极漏电流 Idss 和输出特性。对 400 和 600 V 总线电压进行重复 SC 应力。应力期间总线电压的增加对测试器件的电气性能有更大的影响。在老化实验期间可能会发生热载流子注入和进入沟道区域栅极氧化物的捕获,这被认为是导致电气参数变化的原因。 关键词:可靠性、退化、SiC MOSFET、TrenchMOSFET、重复 UIS、重复短路 介绍 近年来,碳化硅 (SiC) 功率 MOSFET 制造技术已经相当成熟,因此,现在可以从不同的制造商处大量购买 [1]。由于其优异的性能,SiC 器件可用于更高温度、更高开关频率和更高功率密度的应用 [2-3]。尽管如此,在它们完全取代硅 (Si) 器件之前,稳健性和可靠性仍然是这些器件在过流、过温、短路和非箝位电感开关 (UIS) [5] 等多种极端工作条件下的主要问题 [3-4]。随着为降低成本而缩小芯片尺寸的趋势,雪崩稳健性和短路承受能力变得更加关键,因为它们对芯片尺寸设计非常敏感,因为芯片的最大能量密度是固定的。在 UIS 测试中,MOSFET 通常连接到没有反向并联续流二极管的电感,以在关闭器件时换向环路电流。因此,器件必须在工作阶段吸收先前存储在电感中的所有能量。因此,只要存储的能量足够高,MOSFET 就会进入雪崩模式,导致器件结温逐渐升高 [6]。在大电流雪崩操作期间,会产生高浓度的热载流子,这可能会导致界面和绝缘 (氧化物) 层的退化。
在 ARIES 的支持下,微电网传感和控制增强了阿拉斯加科尔多瓦市的恢复能力。科尔多瓦利用 ARIES 验证了其改进的微电网是否能应对地震或雪崩等可能发生的事件,从而使当地电力合作社能够更精确地观察和控制网络。这对科尔多瓦和整个阿拉斯加的土著社区来说非常重要,因为微电网是他们获取能源的最后手段,而控制则使其在关键事件期间更容易适应。
摘要 本文对氨-氧-氮-水混合物中的流光进行了自洽一维建模。开发并验证了一种包含物质输运、静电势和详细化学性质的流体模型。然后使用该模型模拟由纳秒电压脉冲驱动、在不同热化学条件下由一维层流预混氨-空气火焰产生的雪崩、流光形成和传播阶段。成功证实了 Meek 标准在预测流光起始位置方面的适用性。由于电离率不同,流光形成和传播持续时间随热化学条件的不同而存在显著差异。热化学状态还影响击穿特性,通过保持背景减小电场恒定来测试击穿特性。详细的动力学分析揭示了 O(1 D)在关键自由基(如 O、OH 和 NH 2 )生成中的重要性。此外,还报道了 NH 3 的解离电子激发对 H 和 NH 2 自由基产生的贡献。不同热化学状态下各种非弹性碰撞过程的电子能量损失分数的空间和时间演变揭示了燃料解离所消耗的输入等离子体能量以及雪崩和流光传播阶段主要过程的巨大变化。本研究报告的方法和分析对于开发用于氨点火和火焰稳定的受控纳秒脉冲非平衡等离子体源的有效策略至关重要。
摘要。在许多应用中,对可靠、小型且低成本的三维成像系统的需求很大。对于汽车应用以及安全的人机协作等应用而言,有前途的系统是基于直接飞行时间原理的光检测和测距 (激光雷达) 系统。特别是对于覆盖大视野或长距离能力,以前使用的多边形扫描仪已被微机电系统 (MEMS) 扫描仪取代。最近的发展是用单光子雪崩二极管 (SPAD) 取代通常使用的雪崩光电二极管。与其他方法相比,将这两种技术结合到基于 MEMS 的 SPAD 激光雷达系统中有望显着提高性能并降低成本。为了区分信号和背景/噪声光子,基于 SPAD 的探测器必须通过累积多个时间分辨测量来形成直方图。本文提出了一种信号和数据处理方法,该方法考虑了直方图形成过程中 MEMS 扫描仪的时间相关扫描轨迹。基于立体视觉设置中使用的已知重建过程,推导出累积时间分辨测量的估计值,从而可以将其分类为信号或噪声。除了信号和数据处理的理论推导外,还在基于 MEMS 的概念验证 SPAD 激光雷达系统中通过实验验证了实现。© 作者。由 SPIE 根据知识共享署名 4.0 国际许可发布。全部或部分分发或复制本作品需要完全署名原始出版物,包括其 DOI。[DOI:10.1117/1.JOM.2.1.011005]