增材制造 (AM) 工艺通过逐层沉积材料来构建机械零件 [1] 。在金属 AM 工艺中,粉末床熔合 (PBF) 的应用最为广泛 [2] 。PBF 方法使用激光或电子束将粉末床顶部的金属粉末层与下面的层熔合在一起。激光 PBF (LPBF) 的一个众所周知的应用是通用电气开发的尖端航空推进发动机内的燃油喷嘴,其中约 20 个零件的传统设计减少为单个 LPBF 构建 [3] 。虽然这些进步意义重大,但目前工业中的 LPBF 构建实践通常仅限于单一合金。相比之下,定向能量沉积工艺已用于制造金属复合材料,可用于生产需要多种材料的高度工程化机械零件 [4] 。 ODS 合金是一种金属基复合材料,其中纳米级氧化物可抑制高温下的晶粒生长,从而提供高温力学性能和高抗蠕变性[5]。ODS 铁素体合金作为耐辐射包层和结构材料的替代品,受到核工业的广泛关注。氧化物的小尺寸和高数密度导致了大量复合界面,这被认为可以消除点缺陷,防止缺陷在失效前聚集[6]。然而,由于颗粒的浮力,ODS 合金的铸造具有挑战性[7]。因此,传统的粉末冶金法用于生产 ODS
摘要:重要的是研究形成的hastelloy-X合金的激光粉末床融合(LPBF)的微观结构和质地演变,以通过调节Hastelloy-X形成过程参数的调节来建立过程,微结构和性能之间的紧密关系。在本文中,hastelloy-X合金的成分是用不同的激光能密度(也称为体积能密度VED)形成的。研究了Hastelloy-X的致密机理,并分析了缺陷的原因,例如毛孔和裂缝。使用电子反向散射技术研究了不同能量密度对晶粒尺寸,质地和方向的影响。结果表明,随着能量密度的增加,平均晶粒尺寸,原发性树突臂间距和低角度晶界的数量增加。同时,VED可以增强质地。随着能量密度的增加,质地强度会增加。在96 J·mm -3的VED处获得了最佳的机械性能。
本文档提供了有关实验和相关测量文件的详细信息,可在数据集“具有各种悬垂和支撑的镍基高温合金 625 工件的激光粉末床熔合过程中的原位热成像”中下载。测量数据是在使用商用激光粉末床熔合 (LPBF) 系统制造小型镍基高温合金 625 (IN625) 工件期间获得的。工件由两个半拱形特征组成,悬垂的斜率逐渐增加。这些悬垂范围从垂直 5° 到垂直 85°,增量为 10°。工件的几何形状和工艺受到控制,以确保沿悬垂几何形状的加工一致性。这种控制可以将悬垂几何形状和支撑结构的影响与层间扫描策略变化的影响隔离开来。测量包括每一层的高速热成像,从中可以计算出辐射温度、冷却速率和熔池长度。这次实验和数据传播的目的是双重的。第一个目标是为建模社区提供示例数据,以确保他们的模型能够正确考虑热模型中悬垂几何形状和支撑结构的影响。第二个目标是为研究人员和工艺设计人员提供有关悬垂几何形状如何影响 LPBF 工艺的基本见解。
金属增材制造部件中的残余应力是一个众所周知的问题。它会导致样品在从构建板上取出时变形,并且对疲劳产生不利影响。了解打印样品中的残余应力如何受到工艺参数的影响对于制造商调整工艺参数或部件设计以限制残余应力的负面影响至关重要。在本文中,使用热机械有限元模型模拟增材制造样品中的残余应力。材料的弹塑性行为通过基于机制的材料模型来描述,该模型考虑了微观结构和松弛效应。通过将模型拟合到实验数据来校准有限元模型中的热源。将有限元模型的残余应力场与同步加速器 X 射线衍射测量获得的实验结果进行了比较。模型和测量的结果显示残余应力场具有相同的趋势。此外,结果表明,随着激光功率和扫描速度的改变,所产生的残余应力的趋势和幅度没有显著差异。2022 作者。由 Elsevier Ltd. 出版。这是一篇根据 CC BY 许可协议开放获取的文章(http://creativecommons.org/licenses/by/4.0/)。
摘要:Ti6Al4V 合金具有高比机械性能、优异的耐腐蚀性和生物相容性等独特特性,是一种适用于各种工程应用的理想轻质结构金属。本文详细介绍了选择性激光熔化 Ti6Al4V 零件的机械性能,以及影响最终性能的主要加工和微观结构参数。通过将 Ti6Al4V 零件的微观结构特征与最终机械性能联系起来,提供基础知识,包括拉伸强度、拉伸应变、抗疲劳性、硬度和磨损性能。本文还对激光粉末床熔合与传统加工方法进行了比较。本文还批判性地讨论了成品 Ti6Al4V 零件中存在的缺陷及其对机械性能的影响。文献中的结果表明,当考虑植入物和航空航天应用标准的最低值时(例如 ASTM F136-13;ASTM F1108-14;AMS4930;AMS6932),典型的激光粉末床熔融 Ti6Al4V 拉伸性能(屈服强度 >900 MPa 和拉伸强度 >1000 MPa)是足够的。
开发了一种激光粉末床熔合 (LPBF) 策略,用于在 Inconel 718 结构中制造具有高尺寸精度的小通道。特别关注了等效直径和形状因子等表面特性。通过系统地改变 LPBF 轮廓参数以及通道横截面,优化了外表面的固有表面质量。相对于构建平台,分析了上皮、垂直和下皮表面的平均算术粗糙度 Sa。同时,研究了构建方向对直径为 500 至 1000 毫米、构建方向从水平 (0 ) 到垂直 (90 ) 的通道上内部自由形状表面质量的影响。通过使用优化的液滴形横截面(该横截面与构建倾角呈函数关系),可以显著提高尺寸精度。对通道不同区域表面粗糙度的角度分析证实,这种改进的横截面减少了由于向内熔化而显示出特别高表面粗糙度的通道区域的比例。结合优化的轮廓处理策略,改进的通道在倾角低于 45° 时具有最佳性能。形状因子从 0.4 增加到几乎 0.9,即接近理想的圆形。2021 作者。由 Elsevier Ltd. 出版。这是一篇根据 CC BY 许可开放获取的文章(http://creativecommons.org/licenses/by/4.0/)。
Mg 合金的粉末床熔合 - 激光束 (PBF-LB) 为生产具有优化设计的复杂结构提供了新的可能性,既可用于减轻航空航天应用中的重量,也可用于骨科应用中针对特定患者的植入物。然而,尽管已经对该主题进行了大量研究,但各个 PBF-LB 工艺参数对 Mg 合金微观结构和由此产生的材料性能的影响仍然不明确。因此,本研究旨在研究激光功率对表面粗糙度、微观结构和由此产生的关键材料性能(即耐腐蚀性和机械性能)的影响。样品由气雾化的 Mg-4%Y-3%Nd-0.5%Zr(WE43)合金粉末通过 PBF-LB 制成,使用三种不同的激光功率:60 W、80 W 和 90 W。与预期相反,90 W 样品的降解率最高,而 60 W 样品的降解率最低,尽管后者的表面粗糙度最高且内部孔隙较大。相反,发现 90 W 样品的较高降解率源于近表面微观结构。较高的能量输入和随之而来的晶粒尺寸减小,导致第二相沉淀物的数量比 60 W 样品增加,从而增加了通过微电偶腐蚀发生点蚀的趋势。对于拉伸强度和断裂伸长率,观察到了相反的趋势。在这里,发现 90 W 样品的晶粒尺寸减小和沉淀物增加是有益的。总之,观察到激光功率对微观结构的形成有一定影响,最终影响 WE43 的腐蚀和拉伸性能。未来的工作应该研究其他 PBF-LB 工艺参数的影响,以期在耐腐蚀和机械性能之间建立最佳平衡。
供暖约占全球所有最终能源消耗的 50%。为了减少供暖碳排放,必须使用可再生能源。为了解决可再生能源的间歇性问题并提供操作灵活性,需要低成本、多功能的热能存储单元集成系统。岩石基高温热能存储(高达 600 ◦ C)与高温太阳能集热器相结合,为减少中温(100 ◦ C – 250 ◦ C)工业过程中蒸汽锅炉的天然气消耗提供了一种解决方案。本研究使用实验数据开发并验证了现有垂直流 1 MWh 高温热存储单元的二维模型。进行了参数研究以评估关键设计参数及其对温度曲线和充电效率的影响。发现充电效率在 77 – 94 % 范围内。该中试规模模型在数值模型中被扩大到工业级 330 MWh 存储,其中输出温度和流量表示恒定功率输出,同时考虑到太阳能集热器的残余输入热量。
摘要:增材技术目前已广泛应用于复杂精密零件的生产,在成型模具的生产方面具有很高的潜力。本文利用电弧直接能量沉积 (WA-DED) 和激光粉末床熔合 (L-PBF) 技术开发和生产了针对增材制造优化的热成型模具。开发了具有 2D 晶格结构的轻质热成型模具的概念,在使用 L-PBF 生产时,每个模具的重量减少了 56%,从 14.2 千克减轻到 6.1 千克。在增材制造过程中,马氏体时效/沉淀硬化钢 17-4PH 被用作传统热作钢的替代品,后者的机械性能略低,但可加工性高得多。通过在工业螺旋压力机上进行锻造试验,确认了所制造模具的可加工性。
摘要背景深部脑刺激 (DBS) 正在被研究作为治疗难治性强迫症 (OCD) 的方法。许多不同的大脑目标正在接受试验。这些目标中的几个例如腹侧纹状体(包括伏隔核 (NAc))、腹侧囊、下丘脑脚和终纹床核 (BNST))属于同一网络,在解剖学上彼此非常接近,甚至重叠。关于特定目标中的各种刺激参数将如何影响周围解剖区域并影响 DBS 的临床结果的数据仍然缺失。方法在一项对 11 名接受 BNST DBS 的参与者的初步研究中,我们通过针对患者特定的电场模拟来研究哪些解剖区域受到电场的影响,以及这是否与临床结果相关。我们的研究结合个体患者12和24个月随访时的刺激参数以及术前MRI和术后CT图像数据,计算电场分布,建立个体刺激场的解剖模型。结果 12和24个月随访时,BNST内刺激的个体电刺激场相似,主要涉及内囊前肢(ALIC)、内囊膝部(IC)、BNST、穹窿、前内侧苍白球外核(GPe)和前连合。在12个月的随访中,腹侧ALIC和前内侧GPe的耶鲁-布朗强迫症量表测量的临床效果与刺激之间存在统计学上显着相关性(p <0.05)。结论 许多正在研究的强迫症目标在解剖学上接近。从我们的研究可以看出,脱靶效应是重叠的。因此,ALIC、NAc 和 BNST 区域的 DBS 可能被认为是对同一靶标的刺激。