边界网关协议(BGP)是Internet的标准域间路由协议,它传达了网络层的可及性信息,并建立了通往不同目的地的路由。BGP协议表现出安全设计缺陷,例如无条件的信任机制以及BGP相邻节点对同行的BGP路线公告的默认接受,很容易触发前缀劫持,路径伪造,路线泄漏和其他BGP安全威胁。同时,依靠公共密钥基础架构的传统BGP安全机制面临单一失败和单个信任点等问题。区块链的权力下放,反侵略和可追溯性优势为构建安全和值得信赖的域间路由机制提供了新的解决方案想法。在本文中,我们详细概述了BGP协议的特征,分解BGP安全威胁及其原因。此外,我们分析了传统的BGP安全机制的缺点,并全面评估了基于区块链的解决方案,以解决上述问题,并验证基于区块链的BGP安全方法在缓解BGP安全威胁时的可靠性和有效性。最后,我们讨论了BGP安全问题和未来研究的概述前景所带来的挑战。
摘要:全球互联网基础架构的稳定性和可靠性在很大程度上依赖边界网关协议(BGP),这是一种重要的协议,可促进各种自主系统之间的路由信息交换,从而确保全球无缝连接。但是,BGP固有地具有对异常路由行为的敏感性,可能导致严重的连通性破坏。尽管做出了广泛的努力,但准确地检测并有效缓解了这种异常,这仍然是艰难的挑战。为了解决这些问题,本文提出了一种新型的统计方法,该方法采用了某些约束的中值绝对偏差,以主动检测BGP中的异常情况。通过应用高级分析技术,该研究为早期检测异常(例如Internet蠕虫,配置错误和链接故障)提供了强大的方法。这种创新方法已在经验上得到了验证,在识别这些破坏时,准确率为90%,精度为95%。这种高度的精度和准确性不仅确认了采用的统计方法的有效性,而且还标志着增强全球互联网基础架构的稳定性和可靠性的重要一步。
RFC1105, Jun 1989 – BGPv1, the napkin FSM, short marker, link type RFC1163, Jun 1990 – BGPv2, long marker, path attributes, origin control RFC1267, Oct 1991 – BGPv3, router identifier, third party nexthop RFC1654, Jul 1994 – BGPv4, classless.RFC1771,1995年3月 - BGPV4,次要清理,聚合。RFC4271,2006年1月 - BGPV4,2002年的重大清理。
“我们将提前通知投标人,其投标将通过邮寄方式发送至以下地址,并必须在 4 月 23 日星期二中午 12:00 之前到达。请注意,您必须提前通过邮件通知我们您的投标。 如果您希望参加投标,您必须于4月17日星期三中午12点之前通过传真或其他方式提交市场价格调查文件。 投标者必须同意《驻军标准合同》及《投标及签订合同指南》(东部陆军会计司令部网站(https://www.easternarmy.gov/gsdf/eae/kaikei/eafin/index.html)或在泷原驻军会计司令部办公室公布)后才能参与投标。 通过提交出价,您将被视为已经做出了“关于消除有组织犯罪的承诺”中规定的承诺。投标文件中应当包含下列声明作为接受的表示: “本公司(本人(若为个人)、本组织(若为组织))谨此承诺本承诺书中所列的有关排除有组织犯罪的事项。”请注意,如果您拒绝提交上述“有关排除有组织犯罪的承诺事项”中所列的书面承诺,您将无法参与投标。(k)如果在首次投标中有通过邮寄方式提交投标的投标人,则重新投标的时间如下:
BG的观点:21世纪自由研究BG Perspective通用教育课程提供了一个自由研究基金会,为BGSU学生做好准备以使其在整个生命中进行自我依赖,并有效地参与民主社会。BG透视课,反映了BGSU学习社区和领导者在所有成功,满足生活中满足生活的领导者的深刻信念。道德完整性,反思性思维和社会责任是受教育人士的特征。通过积极的学习经验,BG的观点课程为学生提供了重要的知识技能和知识广度,以在其主要学习领域以及后来在他们选择的职业中取得成功。这些智力技能包括批判性思考和有效沟通的能力;理解不同文化和思想方式的能力;以及调查塑造当代文化和社会的社会,艺术,科学和技术复杂性的力量的能力。
秘书处感谢外部专家 Sara Alamin 以及来自技术社区和行业的多位专家为本报告做出的贡献。其中包括:AT&T 的 Amy Alvarez;Lumen Technologies, Inc. 首席架构师 Stewart Bamford;Einar Bohlin;AT&T 的 Chris Boyer;日本互联网倡议研究员、Arrcus Inc. 技术人员 Randy Bush;Lumen Technologies, Inc. 国家安全高级总监 Kathryn Condello;ICANN 的 David Conrad;佐治亚理工学院的 Alberto Dainotti;ICANN 的 Alain Durand;Netnod 的 Patrik Fältström;ICANN 的 Laurent Ferrali;Marco Hogewoning;APNIC 的 Geoff Huston;Anne-Rachel Inne;互联网协会的 Olaf Kolkman;Qrator Labs 的 Alexander Lyamin;Kentik 互联网分析总监 Doug Madory;AT&T 的 Jason Olson; Elena Plexida,ICANN;Andrei Robachevsky,互联网协会;Nicola Rustignoli,苏黎世联邦理工学院;Chelsea J. Smethurst,微软;Job Snijders,Fastly 首席工程师兼 OpenBSD 开发人员;Mark Svancarek,微软;Cecilia Testart,佐治亚理工学院;Martin Thygesen,思科系统公司;Andree Toonk,MySocket.io。
秘书处感谢外部专家 Sara Alamin 以及来自技术界和业界的几位专家为报告做出的贡献。他们包括:Amy Alvarez,AT&T;Stewart Bamford,Lumen Technologies, Inc. 首席架构师;Einar Bohlin;Chris Boyer,AT&T;Randy Bush,Internet Initiative Japan 研究员、Arrcus Inc. 技术人员;Kathryn Condello,Lumen Technologies, Inc. 国家安全高级总监;David Conrad,ICANN;Alberto Dainotti,佐治亚理工学院;Alain Durand,ICANN;Patrik Fältström,Netnod;Laurent Ferrali,ICANN;Marco Hogewoning;Geoff Huston,APNIC;Anne-Rachel Inne;Olaf Kolkman,互联网协会;Alexander Lyamin,Qrator Labs;Doug Madory,Kentik 互联网分析总监;Jason Olson,AT&T;Elena Plexida,ICANN; Andrei Robachevsky,互联网协会;Nicola Rustignoli,苏黎世联邦理工学院;Chelsea J. Smethurst,微软;Job Snijders,Fastly 首席工程师兼 OpenBSD 开发人员;Mark Svancarek,微软;Cecilia Testart,佐治亚理工学院;Martin Thygesen,思科系统公司;Andree Toonk,MySocket.io。
21 世纪初期,IETF 成立了安全域间路由 (SIDR) 工作组,其任务是开发边界网关协议 (BGP) 的安全模型,旨在消除或降低 BGP 劫持和其他针对核心路由基础设施的攻击的成功率。其结果是开发了一种两阶段安全方法,一个基于自治系统 (AS) 公告的前缀(IP 地址范围)起源,另一个处理此类公告所经过的路径的验证。第一阶段称为资源公钥基础设施 (RPKI),自 2013 年初以来一直处于部署阶段,第二阶段称为 BGPsec,包括对 BGP 规范 RFC 4721 的修改。BGPsec 于 2017 年底成为 RFC 标准。在此期间,NIST 积极参与必要 RFC 的开发,并同时开发了参考实现,以解决已开发安全模型的两个层级。
其他AS应该注意到使用AS X到达其他AS的成本已经改变,甚至变得不可用。AS X很自然地会通知其邻居AS X中有更新发生。因此一个AS的变化可能会导致许多其他AS的变化。如果一个AS在很短的时间内发送过多的更新信息,整个网络可能会被这些更新信息淹没。此外,这些信息接受者,也就是路由器,的处理能力是有限的,路由器的存储能力有限,过多的更新信息可能会导致路由器丢包。这就是为什么路由器有一个MRAI计时器,它控制路由器发送更新信息的频率。这个计时器对所有路由器都有一个默认设置,即30秒,然而在不同情况下30秒可能太长或太短,这会延迟收敛。路由器是否可以根据网络的不同情况调整不同的MRAI?在AI的力量范围内,这是完全可能的。