摘要。对微型化,高功率密度和高频电子设备的需求不断增长,突显了具有高电磁干扰(EMI)屏蔽的聚合物复合材料的重要性。这些复合材料对于维护设备,减少沟通错误和保护人类健康至关重要。在这项研究中,我们通过静电相互作用和热压缩技术开发了一种机械压力的聚苯乙烯,MXENE和硝酸硼纳米片(BNNS)的复合材料。在复合材料中构建3D填充网络导致了显着的EMI屏蔽效果,尤其是在低频范围内。此外,观察到与非涂层样品相比,BNNSS包被的样品促成了优质EMI屏蔽效率。这表明BNNSS通过在复合材料中提供其他接口来提高EMI屏蔽效果,并有助于防止MXENE降解。我们希望我们的研究能够为复合材料中3D结构化填充网络的发展提供宝贵的见解,同时有助于改善导热性和EMI屏蔽性能。
摘要 - 在物理验证流中,layout热点检测非常重要。深度神经网络模型已应用于热点检测并取得了巨大的成功。布局可以视为二进制图像。因此,二进制的neu-lal网络(BNN)可以适合热点检测问题。在本文中,我们提出了一个基于BNN的新深度学习档案,以加快热点检测中的神经网络。一个新的二进制残留神经网络经过精心设计用于热点检测。ICCAD 2012和2019基准的实验结果表明,我们的体系结构在检测准确性方面优于先前的热点探测器,并且比最佳基于深度学习的解决方案具有8倍的速度。由于基于BNN的模型在计算上是相当有效的,因此可以通过采用集合学习方法来实现良好的权衡。实验结果表明,集成模型比原始速度损失具有更好的热点检测性能。
摘要。本篇评论探讨了神经网络与建筑之间的关系,特别是在外观设计、室内设计和建筑施工领域。它研究了两种类型的神经网络:生物神经网络,代表人类大脑的神经系统;人工智能,受大脑结构和功能启发的计算系统。本研究对这些神经网络及其在各个领域的应用进行了描述性概述。它进一步研究了这些网络如何在不同层面与建筑相结合。该研究强调了“神经架构”的概念,它将人工神经网络 (ANN) 与建筑相结合,以产生多种设计可能性并揭示隐藏的模式。ANN 用于创建智能建筑和优化结构设计流程以降低成本。此外,该研究还探索了“神经架构”,它探索了生物神经网络 (BNN) 与建筑的相互作用,重点关注建筑环境对大脑和行为的影响。它结合了神经科学、建筑和环境心理学的原理。案例研究分析表明,“pix2pix”、GCNN、DCGAN、CycleGAN 和 StyleGAN 等 AI 工具在通过融合传统和现代风格以及增强创作过程来实现建筑设计的现代化方面的重要性。
摘要 — 本文提出了一种使用 EEG 数据进行情绪识别的新型两阶段框架,该框架在保持模型尺寸小且计算效率高的同时,性能优于最先进的模型。该框架由两个阶段组成;第一阶段涉及构建名为 EEGNet 的高效模型,该模型受到最先进的高效架构的启发,并采用包含深度可分离卷积层的倒置残差块。EEGNet 模型在效价和唤醒标签上分别仅使用 6.4k、14k 和 25k 个参数即可实现 90%、96.6% 和 99.5% 的平均分类准确率。在准确率和存储成本方面,这些模型比之前最先进的结果高出多达 9%。在第二阶段,我们对这些模型进行二值化以进一步压缩它们并轻松将它们部署到边缘设备上。二值神经网络 (BNN) 通常会降低模型准确率。本文通过引入三种新方法改进了 EEGNet 二值化模型,并实现了比基线二值模型高出 20% 的改进。所提出的二值化 EEGNet 模型分别实现了 81%、95% 和 99% 的准确率,存储成本分别为 0.11Mbits、0.28Mbits 和 0.46Mbits。这些模型有助于在边缘环境中部署精确的人类情感识别系统。索引术语 — 情感识别;脑电图;3D-CNN;ResNet;量化;深度学习;二值 CNN