确定研究生物细胞中DNA量的努力出现在20的上半年。世纪,即早在确认DNA是基因调整信息的载体之前(1952年)并揭示其结构(1953年)。开创性的作品除其他外,还表明,同一体细胞组织中的核DNA量是-DINCE是恒定的,基因组GA -Met(精子)的大小为一半。另一个重要的发现是,启示了Geno大小的大量中间差异,而DNA的量与生物体的复杂性或其在分类系统中的位置无关。为此,据报道了c-评估神秘的指定(c-value-未建立的ha-flat基因组的大小,在碱基对的数量中或作为DNA的重量中的DNA中的重量; 1 pg为10 -12 g)。最初认为基因组的大小与基因数量密切相关,因此更先进的生物将具有较高的核DNA含量。明显的悖论后来设法点燃了底部的特征,其中只有一小部分双螺栓(人类中的少于2%)编码蛋白质,而大多数SO -SO -Called非编码部分(重复序列,内含子,假元,调节序列或非编码RNA的基因)。进行比较,最简单的是,通过当前的大约3.2 mi- lials的碱基对相对应,这与CA 3.25 pg DNA相对应。性细胞中DNA纤维的总长度超过1 m,在2 m以上的细胞中弱。目前,最小的已知真核生物属于蘑菇部(Zygo-Mycot)的脑肠道肠道孢子虫。仅包含约225万对碱基(0.0023 pg DNA)。这是一个非常降低状态的内部寄生虫(例如缺乏生活在包括人在内的动物细胞质中的线粒体。
景观建筑杂志,14(2),6-19。 https://doi.org/ 10. 1080/ 18626 033. 2019. 1673562 Albert, C., Brillinger, M., Guerrero, P., Gottwald, S., Henze, J., Schmidt, S., Ott, E., 和 Schröter, B. (2021)。规划基于自然的解决方案:原则、步骤和见解。 Ambio,50(8),1446–1461。 https://doi.org/10.1007/s1328 0-020-01365-1 Amano, T.、Berdejo-Espinola, V.、Christie, AP、Willott, K.、Akasaka, M.、Baldi, A.、Berthinussen, A.、Bertolino, S.、Bladon, AJ、Chen, M.、Choi, C.-. Y.、Bou Dagher Kharrat, M.、de Oliveira, LG、Farhat, P.、Golivets, M.、Hidalgo Aranzamendi, N.、Jantke, K.、Kajzer-Bonk, J.、Kemahlı Aytekin, M. Ç., ... Sutherland, WJ (2021)。利用非英语科学保护全球生物多样性。 PLoS Biology,19(10),e3001296。 https://doi.org/10.1371/ journ al.pbio.3001296 Au Yeung, J., Kraljevic, Z., Luintel, A., Balston, A., Idowu, E., Dobson, R. J., & Teo, J. T. (2023)。人工智能聊天机器人尚未准备好用于临床。数字健康前沿,5,60。https://doi.org/10.3389/FDGTH.2023.1161098 Ausseil, AGE、Daigneault, AJ、Frame, B. 和 Teixeira, EI (2019)。对新西兰气候和社会经济变化的影响和影响进行综合评估。环境建模和软件,119,1-20。 https://doi.org/10.1016/j.envso ft. 2019. 05.009 Babi Almenar, J.、Elliot, T.、Rugani, B.、Philippe, B.、Navarrete Gutierrez, T.、Sonnemann, G. 和 Geneletti, D. (2021)。基于自然的解决方案、生态系统服务和城市挑战之间的联系。土地使用政策,100,104898。Berdejo-Espinola,V.,& Amano,T.(2023)。人工智能工具可以提高科学的公平性。科学,379 (6636),991。https://doi.org/10.1126/sciencece.adg9714 Birner, R.,Daum, T.,& Pray, C. (2021)。谁推动了农业数字化革命?回顾供给侧趋势、参与者和挑战。应用经济观点与政策,43(4),1260–1285。 https://doi.org/10.1002/AEPP.13145 Borgesius, FJZ 和 Zuiderveen Borgesius, FJ (2020)。通过算法和人工智能加强对歧视的法律保护。 http://dx.doi.org/10.1080/13642987.2020.1743976 Brendel, A.、Mirbaie, M.、Lembcke, T.-B. 和 Hofeditz, L. (2021)。人工智能的道德管理。 http://doi.org/10.3390/su130 41974 Brower, AL、Sprague, R.、Vernotte, M. 和 Mcnair, H. (2018)。麦肯齐盆地的农业集约化、所有权和景观变化。新西兰草原杂志,80,47-54。 Brugger,J.,和Crimmins,M.(2015)。设计支持地方气候变化适应的机构:从美国合作推广系统案例研究中获得的见解。天气、气候与社会,7(1),18-38。 https://doi.org/ 10. 1175/ WCAS-D-13-00036. 1 Budhwar,P.、Chowdhury,S.、Wood,G.、Aguinis,H.、Bamber,GJ、Beltran,JR、Boselie,P.、Lee Cooke,F.、Decker,S.、DeNisi,A.、Dey,PK、Guest,D.、K noblich,AJ、Malik,A.、Paauwe,J.、Papagiannidis,S.、Patel,C.、Pereira,V.、Ren,S.、...... Varma,A. (2023)。生成人工智能时代的人力资源管理:ChatGPT 的观点和研究方向。人力资源管理杂志,33(3),606-659。 https://doi.org/10.1111/1748- 8583. 12524 Calliari, E., Staccione, A., 和 Mysiak, J. (2019)。基于自然的气候防护解决方案的评估框架。整体环境科学,656,691-700。 https://doi.org/ 10. 1016/j.scito tenv.2018.11.341 Chausson, A., Turner, B., Seddon, D., Chabaneix, N., Girardin, CAJ, Kapos, V., Key, I., Roe, D., Smith, S., & Seddon, N. (2020)。)。绘制基于自然的解决方案的有效性
“我希望我的父母能够宽容,带领孩子宽容,听取他们的意见,信任他们的孩子。我想对自己感觉良好,在自己的皮肤上感觉良好,像我一样接受。 ”“为了让您的体内感到安全,接收,快乐,对周围环境满意,以表达您的所有情绪,悲伤和喜悦。我们希望成年人不要将我们彼此和案例更糟,不要低估我们的情况。 ” "We would like to have more people to trust, more creative education, not to judge by stamps, to give children time and get to know each other, not have unrealistic expectations for this time (how not to use the phone) helping adult help is attention, love, care, accepting such as I embrace, physical contact, praise." "It is important to take care of each other, regardless of whether it is stranger, a friend or a family, it is important to wonder that the person feels better not to just feel like a我们扔掉的纸皱巴巴的纸。”“如果父母信任他的孩子做出正确的决定,孩子的诱惑较少,可以溜到他的无穷无尽的生活道路上。我们再次邀请他们与我们一起参与与他们有关的事情。对于他们来说,我们在这里。经常我们成年人说有两个世界。我们记得的吱吱作响的调制解调器和互联网比图书馆本身的旅程要慢。甚至没有互联网的时间。,然后是他们的世界,我们将永远无法完全理解。,但实际上我们只有一个共同的世界。以及与孩子们讨论的每句话,我提供了其中一些,渴望,孩子们的邀请,成为他们正在寻找地方的世界的一部分。实际上,孩子是我们的世界。孩子们无条件地和无头论地爱我们。出于一个原因 - 我们是他们。如果我们不是他们生活的一部分,我们将无法保护,指导孩子并成为榜样。第二年,我们一直在安全的互联网日与学术界,州政府和非政府组织的人们会面。我认为
阿尔及利亚康斯坦丁国立理工学院君士坦丁综合电气实验室 (LGEPC) (1) 阿尔及利亚博尔吉布阿拉里季大学科学技术学院 ETA 实验室 (2) 阿尔及利亚乌姆布阿吉大学电子系 (3) ORCID:1.0000-0001-5458-7757;2.0000-0002-1292-7087;3.0000-0003-2599-3304 doi:10.15199/48.2024.11.07 使用 R 峰位置斜率进行心室颤动期间的心脏频率研究摘要。本文介绍了一种直接从 R 峰位置估计心率的新方法,该方法旨在提出和解释一种基于曲线斜率的新方法,该方法重现了 R 峰相对于其各自指数的位置,用于评估患者在心室颤动期间 RR 时间序列动态的差异。该技术的目标是通过目视检查心率变化来评估正常和心室颤动期间的心率。主要目的是验证斜率与心跳类型变化之间的关系。所提出方法的最大优点是只需参考斜率的变化即可识别心室颤动的发作时间。因此,有必要从 QRS 复合波检测算法开始,以找到 R 峰的位置。使用克雷顿大学室性心动过速标准数据库 (CUDB) 对该技术进行评估。Streszczenie。 W niniejszej pracy przedstawiono nową methodę szacowania częstości akcji serca bezpośrednio z pozycji pików R. Celem tej pracy jest przedstawienie iterpretacja nowatorskiej metody opartej na nachyleniu krzywej odtwarzającej R 与 funkcji ich odpowiednich wskaźników、co służy do oceny różnic 和动态 szeregów czasowych RR u pacjentów z migotaniem komór。 Celem tej techniki jest ocena częstości akcji serca podczas uderzeń normalnych i migotania komór poprzez wizualną kontrolę zmian częstości akcji serca. Głównym celem jest sprawdzenie związku pomiędzy nachyleniem a zmianą typepu rytmu serca。 Największą zaletą proponowanej 方法开玩笑 rozpoznanie czasu wystąpienia migotania komór poprzez proste odniesienie się do zmiany nachylenia。 Dlatego konieczne jest rozpoczęcie od algorytmu wykrywania zespołów QRS, aby znaleźć położenie pików R. Ocenę tej techniki przeprowadza się z wykorzystaniem standardowej bazy danych tachyarytmii komorowej克赖顿大学 (CUDB)。 (( Badanie częstotliwości serca podczas migotania komór przy użyciu nachylenia położenia szczytu R ) 关键词:心电图、R 峰值检测、心室颤动、斜率、心频率、心率。 Słowa kluczowe:心电图、wykrywanie szczytu R, migotanie komór、nachylenie、częstość akcji serca、częstość akcji serca。简介 心血管疾病是过去十年中全球一半以上人口死亡的最常见原因。因此,诊断和治疗这些危险疾病似乎是一项至关重要的任务。在心脏病学中,心电图 (ECG) 信号仍然是诊断和分析心律失常最普遍和最广泛使用的工具之一。ECG 检查实际上是医生使用接触皮肤的外部电极来探索心脏功能的一种非侵入性工具。该信号反映了心脏的电活动,除了某些间隔和节段外,它还汇集了三种主要波:P、QRS 和 T。通常,不同波长的持续时间和形状被认为是某些心脏异常的迹象 [1, 2]。心脏病患者猝死的主要原因之一是心室颤动 (VF)。这是一种恶性心律失常,特征为心跳过快、心室心肌收缩不协调 [3, 4, 5, 6]。VF 通常通过患者的 ECG 数据进行诊断。它呈现为形状不规则、脉冲幅度不等的正弦信号(图 1)。在这种情况下,心率可能在每分钟 240 到 600 次 (bpm) 之间或更高 [7]。心率会根据用力、情绪等因素而增加或减慢。在休息时,心率可能会降至 45 bpm,而在发烧或情绪激动时,心率可能会超过 100 bpm。在运动期间,心率与运动强度直接相关,最大用力会使心率加速到 180 bpm。因此,正常变化与心律失常之间的区分并不严格,除非频率非常高。这项工作的目的与通过检测 QRS 波群和心率变异性 (HRV) 计算心率密切相关。这些 QRS 波群的位置是通过使用检测器获得的这是一种恶性心律失常,特征为心跳过快、心室心肌收缩不协调 [3, 4, 5, 6]。VF 通常通过患者的 ECG 数据进行诊断。它呈现为形状不规则、脉冲幅度不等的正弦信号(图 1)。在这种情况下,心率可能在每分钟 240 到 600 次 (bpm) 之间或更高 [7]。心率会根据用力、情绪等因素而增加或减慢。在休息时,心率可能会降至 45 bpm,而在发烧或情绪激动时,心率可能会超过 100 bpm。在运动期间,心率与运动强度直接相关,最大用力会使心率加速到 180 bpm。因此,正常变化与心律失常之间的区分并不严格,除非频率非常高。这项工作的目的与通过检测 QRS 波群和心率变异性 (HRV) 计算心率密切相关。这些 QRS 波群的位置是通过使用检测器获得的这是一种恶性心律失常,特征为心跳过快、心室心肌收缩不协调 [3, 4, 5, 6]。VF 通常通过患者的 ECG 数据进行诊断。它呈现为形状不规则、脉冲幅度不等的正弦信号(图 1)。在这种情况下,心率可能在每分钟 240 到 600 次 (bpm) 之间或更高 [7]。心率会根据用力、情绪等因素而增加或减慢。在休息时,心率可能会降至 45 bpm,而在发烧或情绪激动时,心率可能会超过 100 bpm。在运动期间,心率与运动强度直接相关,最大用力会使心率加速到 180 bpm。因此,正常变化与心律失常之间的区分并不严格,除非频率非常高。这项工作的目的与通过检测 QRS 波群和心率变异性 (HRV) 来计算心率密切相关。这些 QRS 波群的位置是通过使用检测器获得的
Ravin,St.S.,Reik,A.,Liu,P.Q.,Li,L.,Wu,X,X,South,L。和Al。 (2016)。 具有灾难粒状编年史的人类中的靶标添加。 nat。 生物技术 34,424–429。 10.1038/nbt。 (2016)。 crispr/cas9在人和干细胞中的β-珠蛋白基因。 自然539,384–389。 doi:10.1038/nature2 (2017)。 基因治疗者在CD34( +)后代和患者贫血中编辑。 贝尔摩尔。 但是。 9,1574–1588。 doi:10.15252/母亲20170750 Eyquem,J.,Mansilla-Soto,J (2017)。 自然543,113–117。 doi:10.1038/nature2 (2014)。 基因组基因组和人类重生和干细胞。 自然510,235–240。 doi:10.1038/自然 (2019)。 人类基因组编辑的造血刺激炎性疾病的细胞。 nat。 公社。 ISCIENCE 12,369–3Ravin,St.S.,Reik,A.,Liu,P.Q.,Li,L.,Wu,X,X,South,L。和Al。(2016)。具有灾难粒状编年史的人类中的靶标添加。nat。生物技术34,424–429。10.1038/nbt。(2016)。crispr/cas9在人和干细胞中的β-珠蛋白基因。自然539,384–389。doi:10.1038/nature2(2017)。基因治疗者在CD34( +)后代和患者贫血中编辑。贝尔摩尔。但是。9,1574–1588。doi:10.15252/母亲20170750 Eyquem,J.,Mansilla-Soto,J(2017)。自然543,113–117。doi:10.1038/nature2(2014)。基因组基因组和人类重生和干细胞。自然510,235–240。doi:10.1038/自然(2019)。人类基因组编辑的造血刺激炎性疾病的细胞。nat。公社。ISCIENCE 12,369–3ISCIENCE 12,369–310:4045。 doi:10.1038/s41467-019-11962-8 Greiner,V.,Bou Puerto,R.,Liu,S.,Herbel,C.,Carmona,E。M.和Goldberg,M.S。(2019)。CRISPR介导的B细胞受体在原代人B细胞中的编辑。 doi:10.1016/j.isci.2019.01.032 Hartweger,H.,McGuire,A.T.,Horning,M.,Taylor,J.J.,Dosenovic,P.,Yost P.,Yost,D。等。 (2019)。 HIV特定的体液免疫反应由CRISPR/CAS9编辑的B细胞。 J. Exp。 Med。 216,1301–1310。 doi:10.1084/jem.20190287 Hubbard,N.,Hagin,D.,Sommer,K.,Song,Y.,Khan,I.,Clough,C。等。 (2016)。 靶向基因编辑可恢复X连锁超级IGM综合征中调节的CD40L功能。 血液127,2513–2522。 doi:10.1182/Blood-2015-11-683235 Kuo,C.Y.,Long,J.D.,Campo-Fernandez,B.,De Oliveira,S.,Cooper,A.R.,Romero,Z。等。 (2018)。 部位特异性基因编辑人类造血干细胞的X连锁性高IGM综合征。 细胞代表。 23,2606–2616。 doi:10.1016/j.celrep.2018.04.103 Laoharawee,K.,Dekelver,R.C.,Podetz-Pedersen,K.M.,Rohde,M.,Sproul,S.,Nguyen,H.O。等。 (2018)。 通过ZFN介导的体内基因组编辑中的鼠MPS II中代谢和神经疾病的剂量依赖性预防。 mol。 ther。 26,1127–1136。 doi:10.1016/j.ymthe.2018.03.002 Li,H.,Haurigot,V.,Doyon,Y.,Li,T.,Wong,S.Y.,Bhagwat,A.S。等。 (2011)。 体内基因组编辑在血友病的小鼠模型中恢复止血。 自然475,217–221。 (2007)。 nat。CRISPR介导的B细胞受体在原代人B细胞中的编辑。doi:10.1016/j.isci.2019.01.032 Hartweger,H.,McGuire,A.T.,Horning,M.,Taylor,J.J.,Dosenovic,P.,Yost P.,Yost,D。等。(2019)。HIV特定的体液免疫反应由CRISPR/CAS9编辑的B细胞。 J. Exp。 Med。 216,1301–1310。 doi:10.1084/jem.20190287 Hubbard,N.,Hagin,D.,Sommer,K.,Song,Y.,Khan,I.,Clough,C。等。 (2016)。 靶向基因编辑可恢复X连锁超级IGM综合征中调节的CD40L功能。 血液127,2513–2522。 doi:10.1182/Blood-2015-11-683235 Kuo,C.Y.,Long,J.D.,Campo-Fernandez,B.,De Oliveira,S.,Cooper,A.R.,Romero,Z。等。 (2018)。 部位特异性基因编辑人类造血干细胞的X连锁性高IGM综合征。 细胞代表。 23,2606–2616。 doi:10.1016/j.celrep.2018.04.103 Laoharawee,K.,Dekelver,R.C.,Podetz-Pedersen,K.M.,Rohde,M.,Sproul,S.,Nguyen,H.O。等。 (2018)。 通过ZFN介导的体内基因组编辑中的鼠MPS II中代谢和神经疾病的剂量依赖性预防。 mol。 ther。 26,1127–1136。 doi:10.1016/j.ymthe.2018.03.002 Li,H.,Haurigot,V.,Doyon,Y.,Li,T.,Wong,S.Y.,Bhagwat,A.S。等。 (2011)。 体内基因组编辑在血友病的小鼠模型中恢复止血。 自然475,217–221。 (2007)。 nat。HIV特定的体液免疫反应由CRISPR/CAS9编辑的B细胞。J. Exp。Med。216,1301–1310。doi:10.1084/jem.20190287 Hubbard,N.,Hagin,D.,Sommer,K.,Song,Y.,Khan,I.,Clough,C。等。(2016)。靶向基因编辑可恢复X连锁超级IGM综合征中调节的CD40L功能。血液127,2513–2522。doi:10.1182/Blood-2015-11-683235 Kuo,C.Y.,Long,J.D.,Campo-Fernandez,B.,De Oliveira,S.,Cooper,A.R.,Romero,Z。等。(2018)。部位特异性基因编辑人类造血干细胞的X连锁性高IGM综合征。细胞代表。23,2606–2616。doi:10.1016/j.celrep.2018.04.103 Laoharawee,K.,Dekelver,R.C.,Podetz-Pedersen,K.M.,Rohde,M.,Sproul,S.,Nguyen,H.O。等。(2018)。通过ZFN介导的体内基因组编辑中的鼠MPS II中代谢和神经疾病的剂量依赖性预防。mol。ther。26,1127–1136。doi:10.1016/j.ymthe.2018.03.002 Li,H.,Haurigot,V.,Doyon,Y.,Li,T.,Wong,S.Y.,Bhagwat,A.S。等。(2011)。体内基因组编辑在血友病的小鼠模型中恢复止血。自然475,217–221。(2007)。nat。doi:10.1038/nature10177伦巴多(A.使用锌纤维核酸酶和整合酶缺陷式慢病毒载体递送中的人类干细胞中的基因编辑。生物技术。25,1298–1306。doi:10.1038/nbt1353 Macleod,D.T.,Antony,J.,Martin,A.J.,Moser,R.J.,Hekele,A.,Wetzel,K.J.等。(2017)。将CD19汽车的整合到TCRα链基因座中,简化了同种异体基因编辑的CAR T细胞的产生。mol。ther。25,949–961。 doi:10.1016/j.ymthe.2017.02.005 Mo i Q. (2019)。 B细胞设计用于表达病原体特异性抗体防止感染的细胞。 SCI。 免疫。 4:AAX0644。 doi:10.1126/sciimmunol.aax0644 Ou,L.,Dekelver,R.C.,Rohde,M.,Tom,S.,Radeke,R.,St Martin,S.J。等。 (2019)。 ZFN介导的体内基因组编辑纠正了鼠hurler综合征。 mol。 ther。 27,178–187。 doi:10.1016/j.ymthe.2018.10.018 OU,L.,Przybilla,M.J.,Ahlat,O. (2020)。 高度有效的PS基因编辑系统纠正了I. mol的粘多糖含量的代谢和神经系统并发症。 ther。 28,1442–1454。 doi:10.1016/j.ymthe.2020.03.018 Rai,R.,Romito,M.,Rivers,E.,Turchiano,G.,Blattner,G.,G.,Vetharoy,W。等。 (2020)。 nat。 社区。25,949–961。doi:10.1016/j.ymthe.2017.02.005 Mo i Q.(2019)。B细胞设计用于表达病原体特异性抗体防止感染的细胞。SCI。 免疫。 4:AAX0644。 doi:10.1126/sciimmunol.aax0644 Ou,L.,Dekelver,R.C.,Rohde,M.,Tom,S.,Radeke,R.,St Martin,S.J。等。 (2019)。 ZFN介导的体内基因组编辑纠正了鼠hurler综合征。 mol。 ther。 27,178–187。 doi:10.1016/j.ymthe.2018.10.018 OU,L.,Przybilla,M.J.,Ahlat,O. (2020)。 高度有效的PS基因编辑系统纠正了I. mol的粘多糖含量的代谢和神经系统并发症。 ther。 28,1442–1454。 doi:10.1016/j.ymthe.2020.03.018 Rai,R.,Romito,M.,Rivers,E.,Turchiano,G.,Blattner,G.,G.,Vetharoy,W。等。 (2020)。 nat。 社区。SCI。免疫。4:AAX0644。doi:10.1126/sciimmunol.aax0644 Ou,L.,Dekelver,R.C.,Rohde,M.,Tom,S.,Radeke,R.,St Martin,S.J。等。(2019)。ZFN介导的体内基因组编辑纠正了鼠hurler综合征。mol。ther。27,178–187。doi:10.1016/j.ymthe.2018.10.018 OU,L.,Przybilla,M.J.,Ahlat,O.(2020)。高度有效的PS基因编辑系统纠正了I. mol的粘多糖含量的代谢和神经系统并发症。ther。28,1442–1454。doi:10.1016/j.ymthe.2020.03.018 Rai,R.,Romito,M.,Rivers,E.,Turchiano,G.,Blattner,G.,G.,Vetharoy,W。等。(2020)。nat。社区。针对人类造血干细胞的靶向基因校正,以治疗Wiskott -Aldrich综合征。11:4034。 doi:10.1038/s41467-020-17626-2 Scharenberg,S.G.,Poletto,E.,Lucot,K.L.,Colella,P.,Sheikali,A.(2020)。工程单核细胞/巨噬细胞特异性葡萄糖脑苷酶
1医学物理系,IRCCS Azienda Ospedaliero-Universitaria di Bologna,意大利博洛尼亚; 2纽约纽约的纪念斯隆·凯特林癌症中心医学物理部; 3威斯康星大学 - 威斯康星州麦迪逊分校放射学系; 4马里兰州格伦·伯尼(Glen Burnie)核医学研究所; 5澳大利亚新南威尔士州瓦格·瓦格(Wagga Wagga)查尔斯·斯特特大学(Charles Sturt University)牙科与健康科学学院; 6康涅狄格州纽黑文市耶鲁大学医学院放射学和生物医学成像系; 7密苏里州圣路易斯的华盛顿大学生物医学工程和Mallinckrodt放射学院; 8拉脱维亚拉脱维亚大学临床与预防医学研究所; 9纽约纽约的纪念斯隆·凯特林癌症中心放射学系;纽约纽约市威尔·康奈尔医学院放射学系10; 11加利福尼亚州戴维斯戴维斯分校生物医学工程系;瑞士伯尔尼大学核医学系12; 13加拿大不列颠哥伦比亚大学不列颠哥伦比亚大学放射学系; 14放射学和放射科学系,约翰·霍普金斯医学院,马里兰州巴尔的摩; 15瑞士日内瓦日内瓦大学医院核医学和分子成像司; 16荷兰格罗宁根大学医学中心格罗宁根大学核医学与分子成像系; 17加拿大不列颠哥伦比亚省的不列颠哥伦比亚大学放射与物理学系;和18 United Theranostics,贝塞斯达,马里兰州
摘要目的:用脑部计算机界面系统对运动皮层激活进行神经反馈训练可以增强中风患者的恢复。在这里,我们提出了一种新方法,该方法训练与运动性能相关的静止状态功能连接,而不是与运动相关的激活。方法:使用神经反馈和源功能连通性分析和视觉反馈,将十个健康受试者和一名中风患者在其手运动区域和其他大脑之间受过训练的α波段连贯性。结果:十分之一的健康受试者中有7个能够在一次疗程中增加手运动皮层和其他大脑其他大脑之间的α波段连贯性。慢性中风的患者学会了增强其受影响的原发性运动皮层的α波段连贯性,该病神经皮层在一个月内应用了一个月。连贯性在靶向运动皮层和α频率中特别增加。这种增加与中风后运动功能的临床有意义且持久的改善有关。结论:这些结果提供了概念证明,即对α波段连贯性的神经反馈训练是可行的,并且在行为上是有用的。意义:该研究提供了证据表明α波段在运动学习中的作用,并可能导致新的康复策略。1简介大脑界面(BCI)的技术可以监测大脑活动和生成有关活动模式特定变化的实时输出。这特别显示了有关感觉运动节奏(SMR)的表明。记录的受试者会收到有关与他/她的努力相关的神经活动的反馈,因此可以学会自愿调节大脑活动(Kamiya,1969)。SMR对应于α和β频率(〜8-30 Hz)中感觉运动皮层中神经元基的活性,这被真实或想象中的运动抑制(Arroyo等,1993; Pfurtscheller等人,2006年)。人类自愿调节SMR的能力导致BCI的发展用于运动替代,即控制假体和机器人设备(Galan等,2008; McFarland等,2008)。BCI技术的最新应用包括通过反馈训练大脑模式。在神经居住中,神经反馈的兴趣主要在于它可能改善脑部病变患者恢复的潜力(Birbaumer等,2007; Daly等,2008)。运动康复的神经反馈主要旨在训练SMR调节(Buch等,2008; Broetz等,2010; Caria等,2011; Ramos-Murguiarlday等,2013),因此可以看作是对运动成像训练的支持(Mattia等人(Mattia等,2012)。