摘要。在卫星遥感应用中,增强了2级(L2)算法的精度,在很大程度上依赖于对紫外线(UV)(uv)的表面反射的准确估计(visible(vis)光谱。然而,L2算法与表面反射检索之间的相互依赖性构成了挑战,因此需要采取另一种方法。为了解决这个问题,许多卫星属性会产生兰伯特等效的反射性(LER)产品作为先验的表面反射数据。但是,这通常会导致这些数据低估。这项研究是使用半经验的双胎反射分布函数(BRDF)模型得出的背景表面反射(BSR)的适用性的第一个。这项研究将BRDF模型的应用在440 nm处的高光谱卫星数据进行了应用,旨在提供更现实的前段表面反射数据。在这项研究中,使用了地理环境监测光谱仪(GEMS)数据,对GEMS BSR和GEMS LER进行了比较分析显示,相对根平方误差(RRMSE)的精度有3%的相对根平方误差(RRMSE)的精度有所提高。此外,跨不同土地类型的时间序列分析表明,BSR比LER表现出更大的稳定性。为了进一步验证,使用地面真实数据将BSR与其他LER数据库进行了比较,从而产生
摘要:机载高光谱成像已被证明是一种有效的手段,可以为生物物理变量的检索提供新的见解。然而,从机载高光谱测量中获得的无偏信息的定量估计主要需要校正双向反射分布函数 (BRDF) 所描绘的陆地表面的各向异性散射特性。迄今为止,角度 BRDF 校正方法很少结合观察照明几何和地形信息来全面理解和量化 BRDF 的影响。森林地区尤其如此,因为这些地区通常地形崎岖。本文介绍了一种校正机载高光谱影像在崎岖地形上空森林覆盖区域的 BRDF 效应的方法,在本文的补充中称为崎岖地形-BRDF (RT-BRDF) 校正。根据机载扫描仪和局部地形的特点,为每个像素计算局部视角和照明几何形状,并在崎岖地形的情况下使用这两个变量来调整 Ross-Thick-Maignan 和 Li-Transit-Reciprocal 核。新的 BRDF 模型适用于多线机载高光谱数据的各向异性。本研究中的像素数设置为 35,000,基于分层随机抽样方法,以确保全面覆盖视角和照明角度,并尽量减少 BRDF 模型对所有波段的拟合误差。基于中国林业科学研究院在普洱地区(中国)的 LiDAR、CCD 和高光谱系统 (CAF-LiCHy) 获取的多线机载高光谱数据,将应用 RT-BRDF 校正的结果与当前经验(C、太阳冠层传感器 (SCS) 加 C(SCS + C))和半物理(SCS)地形校正方法的结果进行了比较。定量评估和目视检查均表明,RT-BRDF、C 和 SCS + C 校正方法均可降低地形影响。然而,RT-BRDF 方法似乎更有效地降低多条航线重叠区域反射率的变化,其优势在于可以降低由宽视场 (FOV) 机载扫描仪、崎岖地形和长飞行时间内变化的太阳照射角度组合引起的 BRDF 效应。具体而言,针叶林和阔叶林的变异系数 (CV) 平均下降分别为 3% 和 3.5%。这种改进在近红外 (NIR) 区域(即 > 750 nm)尤为明显。这一发现为大面积机载高光谱勘测开辟了新的应用可能性。