Orano 升级后的美国制造工厂使 NUHOMS 干式储存废核燃料罐产量翻了一番 为期两年的重大投资实现了产出目标,将所有制造转移到美国本土工厂,并提高了质量性能。马里兰州贝塞斯达,2021 年 1 月 15 日 — Orano 最近在其位于北卡罗来纳州克纳斯维尔的旗舰工厂完成了整合和实施流程,在增强其 NUHOMS ® 干式储存废核燃料罐的制造方面取得了重大成果。 2018 年,Orano 做出将所有重型制造业务外包的战略决策,从而导致其在克纳斯维尔建立了新的 TN 制造工厂。在 2019-2020 年期间,Orano 将为美国客户制造的所有 NUHOMS 罐整合到这一单一工厂,同时保持其全球供应链以应对突发资源,并升级了国内生产流程。 “与 2019 年相比,2020 年我们的产量翻了一番,”Orano NPS 美国首席运营官 Jean-Luc Palayer 表示,“同时保持了一支积极性高、表现出色的劳动力队伍,并使流程更加可重复和可靠。这对我们、我们的客户和美国废燃料管理来说都是一个重要的里程碑。” 2020 年,Orano 完成并交付了去年客户合同中的所有干式储存系统,产量是 2019 年的两倍,占该设施产能的三分之二。随着精益生产持续改进和额外的工作班次,该设施有能力再次将 2020 年的产量翻一番。TNF 设施经过专门调整,可制造 Orano 最新、最先进的干式燃料储存系统:NUHOMS EOS™。 EOS(扩展优化存储)系统由一个可定制长度的大直径不锈钢罐、一个内部金属合金“蛋箱”篮子(可容纳多达 37 PWR 或 89 BWR 矩形废燃料组件)和涂层碳钢屏蔽塞组成。在实施该设施的新制造能力的同时,Orano 的 EOS 工程师创建了一种互锁篮子设计,消除了篮子制造过程中的所有焊接。凭借这一创新,EOS 篮子的生产速度比传统产品速度快四倍,显著改善了整体生产线。在此实施期间,团队的质量表现和交付也取得了持续的改进。Orano 的美国客户体验到了我们灵活的国内供应链带来的好处,该供应链满足了他们 2020 年的所有准时承诺。Orano 先进的 EOS 技术已获得 NRC 许可,用于每罐高达 50 kW 的废燃料存储热负荷,这是业内最高的,并且是美国市场上唯一一个装载客户废燃料接近这一水平的高容量系统。这些 EOS 系统功能使反应堆所有者能够将较热的燃料组件和冷却时间较短的燃料从反应堆湿式储存池转移到安全的干式储存池中。这有利于运营中的核设施,因为它简化了储存池的管理,并不断减少湿式储存的高热和短冷却燃料组件库存。
基于 FPGA 的安全相关 PRM 系统的资质认证 Tadashi Miyazaki、Naotaka Oda、Yasushi Goto、Toshifumi Hayashi 东芝公司,日本横滨 摘要。东芝开发了基于不可重写 (NRW) 现场可编程门阵列 (FPGA) 的安全相关仪器和控制 (I&C) 系统。考虑到应用于安全相关系统,东芝基于 FPGA 的系统采用了一旦制造后就无法更改的非易失性和不可重写的 FPGA。FPGA 是一种仅由基本逻辑电路组成的设备,FPGA 执行通过连接 FPGA 内部的基本逻辑电路配置的定义处理。基于 FPGA 的系统解决了由模拟电路操作的传统系统(基于模拟的系统)和由中央处理单元操作的系统(基于 CPU 的系统)中存在的问题。应用 FPGA 的优势在于可以保持产品的长寿命供应、提高可测试性 (验证) 并减少模拟系统中可能出现的漂移。东芝此次开发的系统是功率范围中子监测器 (PRM)。东芝计划今后将这种开发流程应用到其他安全相关系统(如 RPS),从而扩大基于 FPGA 的技术的应用范围。东芝为基于 NRW-FPGA 的安全相关 I&C 系统开发了一种特殊的设计流程。该设计流程解决了多年来关于核安全应用数字系统的可测试性问题。因此,东芝基于 NRW-FPGA 的安全相关 I&C 系统具有成为核安全应用数字系统标准的巨大优势。1. 引言核电站的 I&C 系统最初是基于模拟的。1980 和 90 年代开发了基于计算机的 I&C 系统。尤其是先进沸水反应堆 (ABWR) 中使用的系统,是世界上第一个沸水反应堆全数字化仪控系统。与老式模拟系统相比,计算机仪控系统具有许多优势。计算机仪控系统没有漂移问题,而漂移问题曾困扰过模拟系统的维护人员。计算机仪控系统具有许多先进功能,包括一些自动功能,这是任何模拟系统都无法提供的。计算机仪控系统的这些先进功能一直有助于核电站的安全运行。由于计算机仪控系统与安全相关,因此法规和标准要求它们进行验证和确认。然而,丰富的功能和由此产生的软件复杂性使得计算机仪控系统的验证和确认既耗时又昂贵。此外,计算机系统使用半导体工业生产的微处理器,与核工业相比,其产品生命周期较短。大多数微处理器可能在几年内就过时了。FPGA 于 1990 年在半导体行业中得到发展。与普通半导体器件或专用集成电路 (ASIC) 不同,FPGA 中的电路可以在从半导体工厂发货后确定或编程。因此,它适用于核工业等小批量应用。由于 FPGA 是一种半导体器件,其功能由嵌入在器件中的电路决定,因此 FPGA 无需操作系统 (OS) 或基于计算机的 I&C 系统所必需的复杂应用程序即可运行。一般而言,基于 FPGA 的 I&C 系统比基于计算机的 I&C 系统更简单,这使得 V&V 工作更简单且更经济实惠。
基于 FPGA 的安全相关 PRM 系统的认证 Tadashi Miyazaki、Naotaka Oda、Yasushi Goto、Toshifumi Hayashi 东芝公司,日本横滨 摘要。东芝开发了基于不可重写 (NRW) 现场可编程门阵列 (FPGA) 的安全相关仪器和控制 (I&C) 系统。考虑到应用于安全相关系统,东芝基于 FPGA 的系统采用了一旦制造就无法更改的非易失性和不可重写的 FPGA。FPGA 是一种仅由基本逻辑电路组成的设备,FPGA 执行通过连接 FPGA 内部的基本逻辑电路配置的定义处理。基于 FPGA 的系统解决了传统模拟电路系统(模拟系统)和中央处理器系统(CPU 系统)中存在的问题。应用 FPGA 的优势在于可以保持产品的长寿命供应、提高可测试性(验证)以及减少模拟系统中可能出现的漂移。东芝此次开发的系统是功率范围中子监测器 (PRM)。东芝计划从现在开始将这一开发流程应用于其他安全相关系统(如 RPS),从而扩大基于 FPGA 的技术的应用范围。东芝为基于 NRW-FPGA 的安全相关 I&C 系统开发了一种特殊的设计流程。该设计流程解决了多年来关于核安全应用数字系统可测试性的问题。因此,基于东芝 NRW-FPGA 的安全相关 I&C 系统具有成为核安全应用数字系统标准的巨大优势。1.简介 核电站 I&C 系统最初是基于模拟的。1980 和 90 年代开发了基于计算机的 I&C 系统。特别是,先进沸水反应堆 (ABWR) 中使用的系统是世界上第一个用于沸水反应堆的全数字 I&C 系统。与旧的基于模拟的系统相比,基于计算机的 I&C 系统具有许多优势。基于计算机的 I&C 系统没有漂移问题,这些问题困扰了基于模拟的系统维护人员。基于计算机的 I&C 系统具有许多高级功能,包括一些自动功能,这是任何基于模拟的系统都无法提供的。基于计算机的 I&C 系统的这些高级功能一直有助于核电站的安全运行。由于基于计算机的 I&C 系统与安全相关,因此它们需要遵守法规和标准的 V&V。然而,丰富的功能和由此产生的软件复杂性使基于计算机的 I&C 系统的 V&V 既耗时又昂贵。此外,基于计算机的系统使用半导体工业生产的微处理器,与核工业相比,其产品生命周期更短。大多数微处理器可能在几年内就过时了。FPGA 在半导体工业中发展到 1990 年。与普通半导体器件或专用集成电路 (ASIC) 不同,FPGA 中的电路可以在从半导体代工厂发货后确定或编程。因此,它适用于核工业等小批量应用。因为 FPGA 是一种半导体器件,其功能由嵌入在器件中的电路决定,所以 FPGA 不需要基于计算机的 I&C 系统所必需的操作系统 (OS) 或复杂应用程序即可运行。一般而言,基于 FPGA 的 I&C 系统比基于计算机的 I&C 系统更简单,这使得 V&V 工作更简单且更经济实惠。