2024年反金融犯罪的最高趋势并没有比这更明显 - 更多地投资和整合了人工智能。如果去年显示了AI技术的潜力,则2024年将是企业在使用它来抗击金融犯罪方面更具价值的一年。好处包括更全面,更快的调查,待定的AI-AI-创建案例摘要,瞬时可疑活动报告,将所有已在客户身上整理的信息汇总在一起,等等。后端功能包括研究人员的分析,自动分配任务和高级反馈分析。随着生成性AI预计将今年到达所有反金融犯罪领域(KYC,CDD,AML,欺诈,监视清单管理),企业将需要采用,投资和集成AI,以最大程度地发挥其潜力并节省成本。
halvorødegårdteigen是后端开发人员,重点关注DevOps。他的学术背景具有稳固的学术背景,并拥有NTNU的控制论和机器人学硕士学位。通过他在Statens Vegvesen和Statnett的订婚,他表现出了熟练的熟练程度,并获得了跨学科自主团队的团队负责人,Scrum Master和Developer的经验,并具有敏捷的开发方法。Halvor致力于持续增长,并在几项认证和课程上投入了时间。他在数个测试区域获得了iSTQB认证,卡夫卡(Kafka)通过汇合处获得了认可,并在Java,Kotlin和AWS上完成了课程。拥有将近三年的开发人员经验,他现在担任Statnett的支持团队中的团队负责人和Java后端开发人员。在这里,他开发了应用程序和框架,以简化事件驱动系统的质量保证。Halvor在使用临时OpenShift环境的CI/CD管道中的自动集成和价值链测试的解决方案的开发中也具有不可或缺的作用。他以前曾在Statens Vegvesen的测试数据团队中担任开发人员,在那里他使用Python生成合成测试数据和Java来开发用于测试数据管理的应用程序。该项目进一步揭示了要求Halvor在分析和生成合成数据进行测试的中央客户服务中承担责任的需求和潜力。作为一个人,Halvor随和,渴望学习“一切都可以学习”。他表现出了承担责任和所有权所有权的能力,并致力于在事后获得他可以为之骄傲的工作。他与自己专业领域内外的最新技术保持最新状态,并且他的广泛经验使他能够与不同的个性合作,并从跨学科的角度为整体解决方案做出了贡献。
摘要 - 在Web安全领域,越来越多的转变用于利用机器学习技术用于跨站点脚本(XSS)漏洞检测。这种转变认识到自动化的潜力,即简化识别过程并减少对手动人类分析的依赖。另一种方法涉及安全专业人员积极执行XSS攻击,以精确地指出Web范围内的脆弱区域,从而促进了有针对性的补救。此外,人们对基于机器学习的方法在学术和研究领域中创建XSS有效载荷的兴趣越来越大。在这项研究中,我们介绍了一种新模型,用于生成XSS有效载荷,利用自动回火和生成的AI模型的组合来制作旨在利用潜在脆弱性的恶意脚本。我们对XSS漏洞检测的方法涵盖了前端和后端代码,为组织提供了增强Web应用程序安全性的全面手段。
摘要 - 在过去的几年中,越来越多的AI应用程序应用于边缘设备。但是,由数据科学家培训的具有机器学习框架的模型,例如Pytorch或TensorFlow,无法在边缘无缝执行。在本文中,我们开发了一个端到端代码生成器,使用MicrotVM(机器学习编译器框架扩展程序扩展)解决裸机设备上的推理的后端,将预训练的模型解析为C源库。一个分析表明,具有通用模块化加速器(UMA)界面的专用计算密集型运算符可以轻松地向专用加速器进行流动,而其他则在CPU核心中处理。通过使用提前C运行时自动生成的自动生成,我们在ARM Cortex M4F核心上进行了手势识别实验。索引项 - TVM,MicroTVM,模型部署,BYOC,UMA
明确的客户重点是另一个核心成功因素。不同的用例有不同的客户,每个客户都有不同的功能请求和集成挑战(例如,酒店的需求与超市连锁店不同)。同时,一些大型CPO决定(部分)(部分)将其后端开发提供支持,以支持专门的国际扩张,并最大程度地减少动态市场中的数据和其他依赖性。随着市场的成熟和选定的CPMS提供商开始提供出色的解决方案(例如,预测性维护),我们希望大型CPO将其CPM重新出售到第三方软件提供商,并专注于其核心操作任务。这为CPMS提供商提供了赢得利润丰厚的客户并提高保留率未来的机会。同样,仓库和其他车队运营商的授权可以提供额外的上涨潜力。
我们提出了一个用于量子多体模拟的开源张量网络python库。的核心是一种Abelian对称张量,以稀疏的块结构实现,该结构由密集的多维阵列后端的逻辑层管理。这是在矩阵prod-uct状态下运行的高级张量网络算法和预测的纠缠对状态的基础。诸如Pytorch之类的适当后端,可以直接访问自动分化(AD),以实现GPU和其他支持的加速器的成本功能梯度计算和执行。我们在具有无限投影纠缠状态的模拟中显示了库的表现,例如通过Image nime time Evolution通过AD找到基态,并模拟Hubbard模型的热状态。对于这些具有挑战性的示例,我们识别并量化了由对称调整器实现利用的数值优势来源。
多代理增强学习(MARL)的领域目前正面临可重复性危机。虽然已经提出了用于解决该问题的标准化报告解决方案,但我们仍然缺乏一个实现标准化和可重复性的基准测试工具,同时利用尖端的增强学习(RL)实现。在本文中,我们介绍了台式,这是第一个MARL培训库创建的,目的是在不同的算法,模型和环境中启用标准化的基准测试。Benchmarl使用Torchrl作为后端,授予其高性能,并保持最新的信息,同时解决Marl Pytorch用户的广泛社区。其设计启用系统的配置和报告,从而使用户可以通过简单的单行输入创建和运行com-plex基准测试。Benchmarl在github上开源:https://github.com/facebookresearch/benchmarl。
后端 VLSI 设计流程知识 - 库、平面规划、布局、布线、验证、测试。规格和原理图单元设计、Spice 模拟、电路元件、交流和直流分析、传输特性、瞬态响应、电流和电压噪声分析、设计规则、微米规则、设计的 Lambda 规则和设计规则检查、电路元件的制造方法、不同单元的布局设计、电路提取、电气规则检查、布局与原理图 (LVS)、布局后模拟和寄生提取、不同的设计问题(如天线效应、电迁移效应、体效应、电感和电容串扰和漏极穿通等)、设计格式、时序分析、反向注释和布局后模拟、DFT 指南、测试模式和内置自测试 (BIST)、ASIC 设计实施。
多机构增强学习(MARL)的领域目前正面临生产性危机。虽然已经提出了用于解决该问题的标准化报告解决方案,但我们仍然缺乏一个实现标准化和可重复性的基准测试工具,同时利用了尖端的加固学习(RL)实现。在本文中,我们介绍了台式,这是创建的第一个MARL培训库,目的是在不同的al-gorithm,模型和环境中启用标准化的基准测试。Benchmarl使用Torchrl作为后端,授予其高性能并维护最先进的实现,同时解决Marl Pytorch用户的广泛社区。其设计启用系统配置和报告,从而使用户可以通过简单的单行输入创建和运行复杂的基准测试。Benchmarl在github上开源:https://github.com/facebookresearch/benchmarl。
AI和ML增强了数据分析,LCNC,质量保证和数字经验(语音,视觉,手势等)的可靠性,自动化和效率。Infosys Modernation Radar 2022强调了AI和ML是企业中第三大流行的投资领域,其中96%的企业利用这些技术实现了现代化目标。这两种技术都已经在诸如大量大量客户数据以识别机会之类的途径上留下了自己的印记。现在,它们还可以帮助企业加速后端应用程序和开发过程。开发人员可以利用这一机会从开发过程中的早期开始一组复杂的代码中识别出问题模式。将这些模式与诸如GitHub之类的开源工具结合在一起,可以帮助开发人员利用其他人的经验来解决他们的问题。此外,ML的开源社区也已经在自动化编码任务中发挥了重要作用。