小麦麸质蛋白是已知的乳糜泻病因。这些蛋白质中脯氨酸和谷氨酰胺残基的重复序列使其在胃肠道中具有极强的抗消化性。这些未消化的肽会引发易感个体的免疫反应,这可能是过敏反应或乳糜泻。麸质排除饮食是此类疾病的唯一获批疗法。最近,大麦中的谷氨酰胺特异性内切蛋白酶 (EP-B2) 和脑膜炎黄杆菌中的脯氨酰内切肽酶 (Fm-PEP) 的组合在小麦胚乳中表达时,在模拟胃肠道条件下被证明可以合理地解毒免疫原性麸质肽。尽管这些“麸质酶”很有用,但它们的应用受到限制,因为它们在高温下会变性,而大多数食品加工都需要高温。这些酶的变体来自嗜热生物,但由于其最佳活性在高于 37 ◦ C 的温度下存在,因此不能直接应用。不过,这些酶可以作为参考,指导中温来源的肽酶向热稳定性进化。因此,这里使用序列引导的位点饱和诱变方法在编码 Fm-PEP 和 EP-B2 的基因中引入突变。使用这种方法鉴定出能够在高达 90 ◦ C 的温度下存活的 Fm-PEP 的热稳定性变体和热稳定性高达 60 ◦ C 的 EP-B2 变体。然而,达到的热稳定性水平还不够;本研究提供了可以提高谷蛋白酶热稳定性的证据。并且这项初步研究为未来更详细的结构研究奠定了基础,以获得可以在 ∼ 100 ◦ C 温度下存活的 Fm-PEP 和 EP-B2 变体,从而可以将其包装在谷物中并将此类谷物用于食品工业。
摘要:小麦和大麦是全球种植的主要谷物作物,是世界三分之一人口的主食。然而,由于巨大的生物应力,年产量显着降低了30-70%。最近,在控制小麦和大麦病原体中,有益细菌的加速使用已获得突出。在这篇综述中,我们合成了有关有益细菌的信息,具有针对主要大麦和小麦病原体的保护能力,包括法式毛,tritici tritici和pyremophora teres。通过总结对参与植物 - 病原体相互作用的分子因素的一般见解,我们在一定程度上证明了有益细菌与植物防御小麦和大麦疾病有关的手段。在小麦上,许多杆菌菌株主要降低了法付乳杆菌和Z. tritici的疾病发生率。相比之下,在大麦上,一些假单胞菌,杆菌和帕拉伯克霍尔德属的效率。已针对P. teres建立。尽管描述了这些菌株的几种作用模式,但我们强调了芽孢杆菌和假单胞菌次级代谢产物在介导直接拮抗作用并诱导对这些病原体的抗性中的作用。此外,我们提出了确定有益细菌/分子的作用方式,以增强基于溶液的作物保护策略。此外,在众多实验之间存在明显的不一致,这些实验证明了抑制疾病的影响,并将这些成功转化为商业产品和应用。显然,谷物疾病保护的领域留下了很多供探索和发现的东西。
摘要:强制性生物营养真菌病原体,例如blumeria graminis和puccinia graminis,是最具毁灭性的植物病原体之一,在全球许多经济上重要的农作物中导致巨大的产量损失。然而,缺乏可靠的工具进行有效的遗传转化已阻碍了其毒力或致病性的分子基础。在这项研究中,我们介绍了乌斯利戈·霍尔德(Ustilago Hordei) - 巴利(Barley)病态,以表征来自不同植物致病真菌的效应子的模型。我们生成U. Hordei的单性菌株,该菌株形成不兼容的交配伴侣而形成传染性细丝。单性菌株适用于真菌毒力因子的异源表达系统。高效的CRISPR/CAS9基因编辑系统可用于U. Hordei。此外,使用透射电子显微镜分析了大麦定殖过程中的Hordei感染结构,表明U. Hordei形成了与专有锈蚀和白粉病真菌形成的与Haustoria相似的细胞内感染结构。因此,U. Hordei具有很高的潜力,作为大麦异源效应蛋白功能研究的真菌表达平台。
在过去几年中,在植物中使用基于RNA的CAS9基因组编辑的进展一直很快。基因组编辑的理想应用是基因靶向(GT),因为它允许广泛的精确修饰。但是,这仍然是不具备的,尤其是在关键农作物中。在这里,我们使用Planta策略描述了CAS9目标位置的成功,可遗传的基因靶向,但使用小麦矮人病毒复制品未能实现相同的方法,以增加维修模板的拷贝数。没有复制子,我们能够删除目标基因的150 bp的编码顺序,同时将框架内麦克利融合在一起。从14种原始转基因植物开始,两家植物似乎具有所需的基因靶向事件。从其中一种T0植物中,确定了三个独立的基因靶向事件,其中两个是可遗传的。当包括复制子时,产生了39种T0植物,并显示为修复模板的高拷贝数。然而,尽管与非修复策略相比,T1筛选的17条线没有引起显着或可遗传的基因靶向事件。调查表明,复制子方法创建的高拷贝数量的高拷贝数导致假阳性PCR结果,在序列水平上与GT研究广泛使用的连接PCR屏幕中的真实GT事件无法区分。在成功的非修复方法中,在T1中获得了可遗传基因靶向事件,随后,发现T-DNA与靶向基因座有关。因此,靶标和供体位点的物理接近可能是成功基因靶向的一个因素。
亲爱的编辑,作物基因组编辑通过实现精英品种的精确改善,比常规育种具有巨大的优势。在谷物中,大麦(Hordeum vulgare L.)在全球重要性中处于第四位,并且在麦芽和酿造中具有广泛的应用。在像东亚这样的地区,大麦谷物具有传统的烹饪用途,直接煮熟为蒸大麦,烤成茶,或发酵用于味o和酱油,例如味道和酱油。值得注意的是,最近的健康趋势扩大了对年轻大麦草作为功能健康食品的兴趣。由于其富含维生素,纤维和类黄酮的含量,大麦草被加工成绿色果汁(Havlíková等人。2014)。这种绿色粉末表现出在抗毒剂,低脂肪和抗糖尿病活动中的有效性(Yu等人。2003;吉泽等。 2004; Takano等。 2013)。 在日本,雨季经常在收获季节之前,这使得预求发对谷物产量的挑战。 为了打扮,精英品种培养了早期的标题特征。 但是,这些特征对年轻的大麦草产量产生负面影响。 具体来说,年轻峰值的出现降低了草的商业价值。 当前归因于全球变暖的当前气候变化已加速且不稳定的尖峰变速,降低了草产量。 繁殖AP的转变,重点是当代品种中的晚期性状,对于保持一致的草产量至关重要。2003;吉泽等。2004; Takano等。2013)。在日本,雨季经常在收获季节之前,这使得预求发对谷物产量的挑战。为了打扮,精英品种培养了早期的标题特征。但是,这些特征对年轻的大麦草产量产生负面影响。具体来说,年轻峰值的出现降低了草的商业价值。当前归因于全球变暖的当前气候变化已加速且不稳定的尖峰变速,降低了草产量。繁殖AP的转变,重点是当代品种中的晚期性状,对于保持一致的草产量至关重要。我们的vious作品引入了planta粒子轰击 - 核糖核蛋白
。CC-BY-NC-ND 4.0 国际许可,根据 提供(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者,此版本于 2020 年 1 月 8 日发布。;https://doi.org/10.1101/2020.01.07.897280 doi:bioRxiv 预印本
从不同温度下,大麦种子提取物对1M盐酸在1M盐酸中腐蚀的作用是从它们作为绿色抑制剂在清洁和降水过程中的潜在用途的角度研究的。使用50%乙醇/水(VOL)溶液进行提取。使用了两种提取方法:浸泡和超声。通过通过电化学方法(Potentiodynalicallization(Tafel曲线)和电化学耐药性光谱)研究吸附和腐蚀过程来研究抑制剂的抑制作用机制。研究结果没有表明提取方法对抑制行为没有影响,抑制作用作为浓度的函数显示,抑制效率的抑制效率显着提高到浓度为400 ppm,然后在这两种方法中都与其无关。然而,浸泡方法的抑制效率在800 ppm时(87.01%,而超声方法为80%)。对该提取物的抑制机制的研究表明化学吸附的可能性。抑制活性随温度增加。抑制活性随温度增加。
抽象的土壤微生物群是确定地层过程以及土壤的生物学特性的最重要因素之一。在现代技术中使用微生物制剂不仅增加了植物的抗性,生产力和产品质量,而且还有助于每种植物固有的微生物复合物的形成。我们研究的目的是确定根际土壤中春季大麦植物的单个生态和营养基团的微生物数量,具体取决于培养技术的元素(制剂的应用)。在塞巴斯蒂安和赫利奥斯品种的春季大麦发生期间,土壤的主要生态和营养基团的数量取决于培养技术的要素(制剂的应用),个体生成的相位,以及土壤和气候条件。在春季大麦植物的个体发生过程中,观察到养育微毛的数量增加。在土壤中发现了大部分的细胞营养微毛虫是塞巴斯蒂安的植物和Helios品种的种植,并使用VIMPEL 2,并混合了Vimpel 2 + Oracle Multicomplex。这证实土壤包含足够数量的有机物。在整个植被季节中,致病性霉菌群的特征是春季大麦的农业春季中的数量很高。使用了Vympel 2和Vympel 2 +甲骨文多复合物的混合物的变体,土壤中的致病微菌丝数量是春季大麦植物的种植显着降低。表明,无论单独和混合物中的制备vimpel 2能够通过改善其免疫力来保护植物免受疾病的影响。少亲子微生物的数量是对照变体中最高的,并且分别使用所有研究的制剂。与对照变体中的嗡嗡声形成的微米的数量也减少了1-1.5倍。vimpel 2和甲骨文的应用带入了多种复合物显着增强氨化微生物的发展的情况。淀粉分解的微生物和溶解的微菌丝也增加了。这些微生物在存在酶的情况下降解了含纤维素的底物。它们不需要大量的营养,但是为开发吸收水解产物的其他微毛菌提供了机会。因此,春季大麦植物播种下的根际土壤能够形成一种微生物复合物,该复合物显着取决于生长技术的元素。确认的矿化氮气化氮,养分性和贫营养性的系数确定了氮矿化和固定化过程的规律性,以及根据耕种技术的元素(应用技术的应用)。确定了春季大麦植物的根际土壤中的微米数与HTC的值之间的明显关系。关键词:土壤霉菌群,农业症,微毛虫的数量,水热和微生物系数,植物根源分泌,培养技术的元素。
抽象斑点斑点(SB)是一种普遍的大麦叶子疾病,是由半野生真菌病原体索罗基尼亚人引起的。主要发生在全球潮湿的生长区域中,SB可能导致高达30%的收益率损失。遗传抗性仍然是疾病管理的最有效策略;然而,尽管先前鉴定出主要的抗性基因座,但大多数澳大利亚大麦品种都表现出敏感性。这项研究调查了澳大利亚大麦育种计划中的遗传结构潜在的斑点斑点抗性。连续两年使用单个分生孢子(SB61)在幼苗和成人生长阶段进行了抗药性。总共将337条大麦线与16,824个多态性飞镖seq™标记物一起键入。采用了两种映射方法:全基因组关联研究(GWAS)和基于单倍型的局部基因组估计值(局部GEBV)方法。两种方法都鉴定出在3H和7H铬的两个主要抗性相关区域,在跨生长阶段有效。此外,基于单倍型的局部GEBV方法揭示了GWAS未检测到的1H,3H和6H的抗性相关区域。单倍型堆叠分析强调了7H区域与其他抗药性单倍型相结合时,7H区域对成人植物抗性的批评作用,表明by-Gene的相互作用显着,并突出了斑点斑点耐药性的复杂,定量性质。这项研究证实了澳大利亚大麦繁殖种群中关键阻力基因座的存在,为斑点抗性抗性的遗传结构提供了新的见解,并强调了通过单倍型堆叠和全基因组预测方法增强抵抗力的潜力。
