摘要:eumelanins是通过其自然前体的氧化聚合获得的天然和合成色素的家族:5,6-二羟基吲哚和其2-羧基衍生物(DHICA)。同时存在离子和电子电荷载体,使这些颜料有望在生物电子中应用。在这项计算研究中,考虑到其许多自由度之间的相互作用,我们构建了Dhica黑色素的结构模型,然后我们检查了代表性低聚物的电子结构。我们发现,沿聚合物链的非呈偶极子将该系统与常规聚合物半导体区分开来,确定其电子结构,对氧化和电荷载体的定位。我们的作品阐明了Dhica黑色素以前未被注意到的特征,不仅与它的根本清除和光保护特性相吻合,而且还开辟了对这类材料中理解和调谐电荷传输的开放新观点。
近年来,通过氢键、疏水作用、π-π作用及静电作用等构建了亲水聚合物水凝胶,由于其良好的弹性、生物黏附和生物相容性等特性,在生物和医学领域得到了广泛的应用。杨建军研究组设计了一种具有靶向功能的紫杉醇水凝胶,将叶酸作为靶向基团引入凝胶体系,通过均匀的纳米球交织构成三维网络,得到小分子水凝胶,该水凝胶中紫杉醇的载药量可达49.4%,高于许多药物递送系统的包封量。徐建军研究组利用过表达酯酶的宫颈癌细胞,合成了受酯酶影响的多肽分子。这些分子可以进入细胞并自组装成纳米纤维,然后纳米纤维相互缠绕形成水凝胶,导致宫颈癌细胞死亡。8然而,以两亲性小分子为代表的这些水凝胶不可避免地需要较高的温度才能形成凝胶,这限制了它们作为大分子药物(蛋白质、基因等)的载体的应用。环糊精(CD)是一种大环化合物,具有良好的水溶性和生物相容性,因此,它因与有机和生物基质的特定结合而备受关注。由CD构建的超分子水凝胶已广泛应用于环境响应
宿主对生物材料的反应极其多样,涉及一系列不同的机制,并受宿主、材料和外科手术特征等因素控制。这些反应本身构成了生物相容性现象的重要组成部分。本节将严格回顾生物相容性的广泛概念,特别参考人体宿主反应在决定生物材料及其所用设备的性能方面所起的作用。特别强调了生物相容性对设备临床应用的影响。但应记住,生物相容性现象极难远程询问或主动研究,因此生物材料与人体组织相互作用的细节准确信息并不容易获得。正如 Black (1) 在参考对宿主反应的一般观察时指出的那样,我们通常只能在事件发生很久之后通过检查终点(通常是组织病理学检查)来检测事件。这在动物生物相容性实验中很常见,但与人类临床经验更相关的观察结果。因此,本节中的所有评论都必须考虑到这一点。
摘要描述了用于植入电子系统的生物相容性包装过程,将生物相容性和密封性与极端微型化结合在一起。在总包装序列的第1阶段中,所有芯片均已封装,以实现双向扩散屏障,防止体液将体液浸入包装中,从而导致腐蚀,并防止Cu(例如CU)(例如Cu扩散到体内),这会导致各种不良影响。对于成本效益,这种密封芯片密封是通过标准清洁室(CR)制造技术的修改作为晶圆级的后处理步骤进行的。众所周知的导电和绝缘Cr材料在其生物相容性,扩散屏障特性和对腐蚀的敏感性方面进行了研究。在包装过程的第2阶段中,最终设备的所有芯片均应进行电连接,并使用例如金或铂的生物相容性金属 - 亮液方案。植入后直接与组织直接接触的电极,提出了iRox金属化。设备组件的第3阶段是最终的包装步骤,在此步骤中,所有系统组件(例如电子,被动,蝙蝠等)都将互连。为了提供足够的机械支持,所有这些组件均使用生物相容性弹性体(如PDM)嵌入。