Requirement 1 — Complete 1 of 3 CoursBIO 264es BIO 130 - Biology 4.0 CELL 120 - Science of Biology 3.0 MMBIO 121 - Gen Biology: Health & Disease 3.0 Requirement 2 —Complete 4 Courses MMBIO 151 - Microbiology 4.0 MMBIO 240 - Molecular Biology 3.0 MMBIO 241 - Molecular & Cellular Bio Lab 1.0 MMBIO 261 - Infection &免疫力3.0需求3 - 整盘12小时MMBIO 360-细菌遗传学4.0 MMBIO 363-微生物生态学2.0 MMBIO 364-细菌发病机理3.0 MMBIO 3.0 MMBIO 366-微生物生态学实验室1.0 MMBIO 385 -MMBIO 385-噬菌体3.0 Mmbio 418-医学parasogial parasogial parasogial parasologicy -41.20 2 2. 0 2 2. 0 2 2. 0 2 2. 0 2 2. 0 2 2. Physiology 3.0 MMBIO 463 - Immunology 3.0 MMBIO 465 - Virology 3.0 MMBIO 466 - Virology Laboratory 1.0 MMBIO 467 - Immunology Lab 1.0 Requirement 4 —Complete 4 Courses CHEM 105 - Gen College Chem 1+Lab Integr 4.0 CHEM 106 - General College Chemistry 2 3.0 CHEM 107 - Gen Coll Chem Lab 1.0 PHSCS 105 - General Physics 1 3.0 Requirement 5 - 拼写1个课程化学285-启动生物有机化学4.0化学351-有机化学1 3.0要求6-校准1个课程数学数学112-微积分1 4.0 STAT 121-统计数据数据介绍到统计数据分析的介绍3.0要求7 - complete 7 - complete 14小时,用于满足需求1-6可能不满足1-6对于某些选修课程,有限数量的学时可以计入这一选修要求。Option 7.1 —Complete at least 10 hours up to 14 hours BIO 165 - Introduction to Bioinformatics 3.0 BIO 250 - Evolutionary Medicine 2.0 BIO 264 - Stat Analysis for Biologists 4.0 BIO 350 - Ecology 3.0 BIO 420 - Evolutionary Biology 4.0 BIO 463 - Genetics of Human Disease 3.0 CELL 305 - Human Physiology 4.0 CELL 325 - Tissue Biology (with lab) 3.0 CELL 360 - Cell Biology 3.0 CELL 362 - Advanced Physiology 3.0 CELL 363 - Adv Physiology Lab 1.0 CHEM 351 - Organic Chemistry 1 3.0 CHEM 352 - Organic Chemistry 2 3.0 CHEM 353 - Organic Chem Lab-Nonmajors 1.0v CHEM 481 - Biochemistry 3.0 CHEM 482 - Mechanisms of Molecular Biol 3.0 MMBIO 110R - Extremophiles - You may take once 1.0 MMBIO 122 - Gen Biol: Health/Disease Lab 1.0 MMBIO 162R - Careers in Biomed Sciences - You may take once 1.0 MMBIO 194 - Phage Discovery 3.0 MMBIO 195 - Phage Comparative Genomics 3.0 MMBIO 294R - Mentored Research - You may take up to 2.0 credit hours 0.5v MMBIO 350 - Genetic Counseling 3.0 MMBIO 360 - Microbial遗传学4.0 MMBIO 364-细菌发病机理3.0 MMBIO 366-微生物生态实验室1.0
尖峰蛋白致病性研究库Abdi A等人,“ SARS-COV-2与心肌细胞的生物相互作用:对心脏损伤和药物治疗的基本分子机制的见解。”药物。2022; 146:112518。 doi:10.1016/j.biopha.2021.112518 Aboudounya MM和RJ头,“ Covid-19和类似Toll的受体4(TLR4):SARS-COV-2可以结合并激活TLR4,以增加ACE2的表达,促进并促进并引起超in-inflammation。”介体插入式。2021; 2021:8874339。 doi:https://doi.org/10.1155/2021/8874339 Acevedo-Whitehouse K和R Bruno,“基于mRNA的疫苗疗法的潜在健康风险:一种假设:Med。假设2023,171:111015。doi:https://doi.org/10.1016/j.mehy.2023.111015 Ahn Wm等人,“ SARS-COV-2峰值蛋白会刺激鼠类和人类元群的大型型号的pkccase comcase tandy taimands comcase tangicants comcase tandys tandy ty24-NAdadphInds nodphicts tybccase。 2:175。doi:https://doi.org/10.3390/10.3390/antiox13020175 AIT-Belkacem I等,“ SARS-COV-2峰值蛋白会诱导双重性单核细胞激活,这可能会导致COVID 19的年龄偏见,” COVID 19的严重程度,”REP。2022,12:20824。doi:https://doi.org/10.1038/s41598- 022-25259-2 Aksenova ay等在Silico研究中提出的,” Int J Mol Sci。2022,23(21):13502。DOI:https://doi.org/10.3390/ijms232113502 Al-Kuraishy HM等人,“ SARS-COV-2感染患者的血液粘度的变化。”正面。Med。2022,9:876017。 doi:10.3389/fmed.2022.876017 al-Kuraishy HM等人,“ Covid-19中的溶血性贫血”。安。剧烈。Med。2022; 101:1887–1895。doi:10.1007/s00277-022-04907-7 Albornoz Ea等人,“ SARS-COV-2驱动NLRP3通过峰值蛋白中人类小胶质细胞中的nlrp3渗透性激活”,Mol。Psychiatr。(2023)28:2878–2893。doi:https://doi.org/10.1038/s41380-022-022-01831-0 Aleem A和Ahmed Nadeem,Coronavirus(Covid-19)疫苗(Covid-19)疫苗诱导的无症状血栓性血栓形成血栓形成血栓细胞(Vitt)(Vitt)(vitt)(vitt)(vaster niber Island),faster niber niber niber n eal eal elm:statpears elm:statpe elm:statpe e。 “ SARS-COV-2尖峰蛋白:发病机理,疫苗和潜在疗法”,感染49,第1期。5(2021年10月):855–876,doi:https://doi.org/10.1007/s15010-021-01677-8 Angeli Fet al。,“ Covid-19,Ace2和其他ACE2和其他血管紧张素酶的疫苗和表现。关闭“ Spike ecect”上的循环。” Eur J.实习生。2022; 103:23–28。doi:10.1016/j.ejim.2022.06.015 Angeli F等。2023年3月; 109:12-21。 doi:10.1016/j.ejim.2022.12.004 AO Z等人,“ SARS-COV-2 DELTA SPIKE蛋白增强了病毒式融合性和炎症性细胞因子的产生。” Iscience 2022,25,8:104759。DOI:10.1016/j.isci.2022.104759 Appelbaum K等人,“ SARS-COV-2 SPIKE-2 SPIKE依赖性血小板在COVID-19疫苗诱导的血小板诱导的血小板上的血小板激活中。”血液副词。2022 no。6:2250–2253。 doi:10.1182/bloodAdvances.2021005050506:2250–2253。doi:10.1182/bloodAdvances.202100505050
1. Cascella M、Rajnik M、Cuomo A、Dulebohn SC、Di Napoli R。冠状病毒的特征、评估和治疗。收录于:StatPearls [Internet]。收录于:StatPearls [Internet]。Treasure Island (FL):StatPearls Publishing。2020 年。PMID:32150360。2. Kermali M、Khalsa RK、Pillai K、Ismail Z、Harky A。生物标志物在 COVID-19 诊断中的作用:系统评价。生命科学。2020;254:117788。3. Suri JS、Puvvula A、Biswas M 等人。COVID-19 对合并症患者脑和心脏损伤的途径:基于医学影像和人工智能的 COVID 严重程度分类的作用:综述。Comput Biol Med。2020;124:103960。 4. Ad N、Luc JGY、Nguyen TC 等人。北美心脏手术和 2019 年冠状病毒病 (COVID-19):负担和影响的地区差异。J Thorac Cardiovasc Surg。2020 年。5. Haft JW、Atluri P、Ailawadi G 等人。COVID-19 大流行期间的成人心脏手术:分层患者分诊指导声明。Ann Thorac Surg。2020;110(2):697-700。6. Huang L、Zhao P、Tang D 等人。通过磁共振成像确定康复的 COVID-19 患者的心脏受累。JACC Cardiovasc Imaging。2020;13(11):2330-2339。https://doi.org/10。 1016/j.jcmg.2020.05.004 7. Wang D, Hu B, Hu C, 等。武汉市 138 例 2019 年新型冠状病毒感染的肺炎住院患者的临床特征。JAMA ‐ J Am Med Assoc 。2020;323(11):1061 ‐ 1069。 8. Dilsizian SE, Siegel EL。人工智能在医学和心脏成像中的应用:利用大数据和先进计算提供个性化的医疗诊断和治疗。Curr Cardiol Rep。2014;16(1):1 ‐ 8。https://link.springer.com/article/10.1007/s11886-013-0441-8 9. Shi F, Wang J, Shi J, 等。回顾人工智能技术在 COVID-19 影像数据采集、分割和诊断中的应用。IEEE Rev Biomed Eng。2020;14:4-15。10. King BF。人工智能与放射学:未来会怎样?J Am Coll Radiol。2018;15:501-503。https://pubmed.ncbi.nlm。nih.gov/29371088/ 11. Bashir M,Harky A。主动脉手术中的人工智能:机器的崛起。Semin Thorac Cardiovasc Surg。第 31 卷,2019:635-637。12. De Marvao A、Dawes TJW、Howard JP、O'Regan DP。人工智能与心脏病专家:2020 年你需要了解的内容。心脏。 2020;106:399-400。http://heart.bmj.com/ 13. Stoitsis J、Valavanis I、Mougiakakou SG、Golemati S、Nikita A、Nikita KS。基于医学图像处理和人工智能方法的计算机辅助诊断。Nucl Instrum Methods Phys Res Sect A Accel Spectrometers、Detect Assoc Equip。2006;569(2 SPEC. ISS):591-595。14. Johnson KW、Torres Soto J、Glicksberg BS 等人。心脏病学中的人工智能。J Am Coll Cardiol。2018;71:2668-2679。http://creativecommons.org/licenses/by/4.0/
参考文献1。Finestone E,Wishnia J.估计南非癌症的负担。s Afr J Oncol。2022; 6:1-7。 https://doi.org/10.4102/sajo.v6i0.220。2。Statssa.gov.za [Internet]。南非的死亡率和死亡原因:死亡通知的发现。南非:统计局; 2018。 1-149。 报告号 :P0309.3。 可从:http://www.statssa.gov.za/publications/ p03093/p030932018.pdf。 2023年8月16日访问。 3。 Hemmings HC,Egan TD,编辑。 麻醉的药理学和生理学:基础和临床应用。 第二版。 费城:Elsevier; 2019。 4。 Brusich KT,AcanI。非移植手术的移植受者的麻醉注意事项[Internet]。 in:Tsoulfas G,编辑。 器官捐赠和移植 - 当前状态和未来挑战。 intechopen; 2018。https:// doi.org/10.5772/intechopen.74329。 5。库珀总经理。 真核细胞周期[Internet]。 桑德兰:中国同事; 2000。 可从:https://www.ncbi.nlm.nih.gov/books/nbk9876/获得。 2023年8月31日访问。 6。 Mustapha A,Ismail A,Abdullahi S等。 癌症化学疗法:综述更新动作,前景和相关问题的机制。 J BioMed。 2022; 01(01):001-16。 https://doi.org/10.53858/bnas01010119。 7。 Katzung BG。 基本和临床药理学。 第五版。 8。南非:统计局; 2018。 1-149。报告号:P0309.3。可从:http://www.statssa.gov.za/publications/ p03093/p030932018.pdf。2023年8月16日访问。3。Hemmings HC,Egan TD,编辑。麻醉的药理学和生理学:基础和临床应用。第二版。 费城:Elsevier; 2019。 4。 Brusich KT,AcanI。非移植手术的移植受者的麻醉注意事项[Internet]。 in:Tsoulfas G,编辑。 器官捐赠和移植 - 当前状态和未来挑战。 intechopen; 2018。https:// doi.org/10.5772/intechopen.74329。 5。库珀总经理。 真核细胞周期[Internet]。 桑德兰:中国同事; 2000。 可从:https://www.ncbi.nlm.nih.gov/books/nbk9876/获得。 2023年8月31日访问。 6。 Mustapha A,Ismail A,Abdullahi S等。 癌症化学疗法:综述更新动作,前景和相关问题的机制。 J BioMed。 2022; 01(01):001-16。 https://doi.org/10.53858/bnas01010119。 7。 Katzung BG。 基本和临床药理学。 第五版。 8。第二版。费城:Elsevier; 2019。4。Brusich KT,AcanI。非移植手术的移植受者的麻醉注意事项[Internet]。in:Tsoulfas G,编辑。器官捐赠和移植 - 当前状态和未来挑战。intechopen; 2018。https:// doi.org/10.5772/intechopen.74329。5。库珀总经理。真核细胞周期[Internet]。桑德兰:中国同事; 2000。可从:https://www.ncbi.nlm.nih.gov/books/nbk9876/获得。2023年8月31日访问。6。Mustapha A,Ismail A,Abdullahi S等。癌症化学疗法:综述更新动作,前景和相关问题的机制。J BioMed。2022; 01(01):001-16。 https://doi.org/10.53858/bnas01010119。7。Katzung BG。 基本和临床药理学。 第五版。 8。Katzung BG。基本和临床药理学。第五版。 8。第五版。8。Norwalk(Conn。):Appleton&Lange; 1992。Milner A,Welch E,编辑。 麻醉和重症监护中的应用药理学。 第二版。 Milner和Welch(Pty)Ltd; 2019。 9。 Freeman BS,Berger JS,编辑。 麻醉核心评论:第1部分,基础考试。 纽约:麦格劳 - 希尔教育医学; 2014。 10。 Peck T,Harris B.麻醉和重症监护的药理学。 第五版。 剑桥大学出版社; 2021。https://doi.org/10.1017/9781108591317。 11。 Liu L,Ren B,Zhang H等。 中国肾移植接受者中米唑替替替替替替替替替替替替替啶的人群药代动力学分析。 移植Proc。 2018; 50(8):2392-7。 https:// doi.org/10.1016/j.transproceed.2018.03.030。 12。 Hussain Y,Khan H.免疫抑制药物。 encycl感染免疫。 2022; 4:726-40。https://doi.org/10.1016/b978-0-12-818731-9.00068-9。 13。 Marczin N,Racz K.抗反射药物和免疫抑制剂[Internet]。 in:Evers AS,Maze M,Kharasch ED,编辑。 麻醉药理学。 第二版。 剑桥大学出版社; 2013年。 830-41。 https://doi.org/10.1017/ CBO9780511781933.053。 14。 DörnerT,Kay J.风湿病学生物仿制药:当前的观点和经验教训。 nat Rev Rheumatol。 2015; 11(12):713-24。 https://doi.org/10.1038/ nrrheum.2015.110。 15。 Watson J,Ninh MK,Ashford S等。 麻醉药物和与化学治疗剂的相互作用。 oncol ther。Milner A,Welch E,编辑。麻醉和重症监护中的应用药理学。第二版。 Milner和Welch(Pty)Ltd; 2019。 9。 Freeman BS,Berger JS,编辑。 麻醉核心评论:第1部分,基础考试。 纽约:麦格劳 - 希尔教育医学; 2014。 10。 Peck T,Harris B.麻醉和重症监护的药理学。 第五版。 剑桥大学出版社; 2021。https://doi.org/10.1017/9781108591317。 11。 Liu L,Ren B,Zhang H等。 中国肾移植接受者中米唑替替替替替替替替替替替替替啶的人群药代动力学分析。 移植Proc。 2018; 50(8):2392-7。 https:// doi.org/10.1016/j.transproceed.2018.03.030。 12。 Hussain Y,Khan H.免疫抑制药物。 encycl感染免疫。 2022; 4:726-40。https://doi.org/10.1016/b978-0-12-818731-9.00068-9。 13。 Marczin N,Racz K.抗反射药物和免疫抑制剂[Internet]。 in:Evers AS,Maze M,Kharasch ED,编辑。 麻醉药理学。 第二版。 剑桥大学出版社; 2013年。 830-41。 https://doi.org/10.1017/ CBO9780511781933.053。 14。 DörnerT,Kay J.风湿病学生物仿制药:当前的观点和经验教训。 nat Rev Rheumatol。 2015; 11(12):713-24。 https://doi.org/10.1038/ nrrheum.2015.110。 15。 Watson J,Ninh MK,Ashford S等。 麻醉药物和与化学治疗剂的相互作用。 oncol ther。第二版。Milner和Welch(Pty)Ltd; 2019。9。Freeman BS,Berger JS,编辑。麻醉核心评论:第1部分,基础考试。纽约:麦格劳 - 希尔教育医学; 2014。10。Peck T,Harris B.麻醉和重症监护的药理学。第五版。 剑桥大学出版社; 2021。https://doi.org/10.1017/9781108591317。 11。 Liu L,Ren B,Zhang H等。 中国肾移植接受者中米唑替替替替替替替替替替替替替啶的人群药代动力学分析。 移植Proc。 2018; 50(8):2392-7。 https:// doi.org/10.1016/j.transproceed.2018.03.030。 12。 Hussain Y,Khan H.免疫抑制药物。 encycl感染免疫。 2022; 4:726-40。https://doi.org/10.1016/b978-0-12-818731-9.00068-9。 13。 Marczin N,Racz K.抗反射药物和免疫抑制剂[Internet]。 in:Evers AS,Maze M,Kharasch ED,编辑。 麻醉药理学。 第二版。 剑桥大学出版社; 2013年。 830-41。 https://doi.org/10.1017/ CBO9780511781933.053。 14。 DörnerT,Kay J.风湿病学生物仿制药:当前的观点和经验教训。 nat Rev Rheumatol。 2015; 11(12):713-24。 https://doi.org/10.1038/ nrrheum.2015.110。 15。 Watson J,Ninh MK,Ashford S等。 麻醉药物和与化学治疗剂的相互作用。 oncol ther。第五版。剑桥大学出版社; 2021。https://doi.org/10.1017/9781108591317。11。Liu L,Ren B,Zhang H等。 中国肾移植接受者中米唑替替替替替替替替替替替替替啶的人群药代动力学分析。 移植Proc。 2018; 50(8):2392-7。 https:// doi.org/10.1016/j.transproceed.2018.03.030。 12。 Hussain Y,Khan H.免疫抑制药物。 encycl感染免疫。 2022; 4:726-40。https://doi.org/10.1016/b978-0-12-818731-9.00068-9。 13。 Marczin N,Racz K.抗反射药物和免疫抑制剂[Internet]。 in:Evers AS,Maze M,Kharasch ED,编辑。 麻醉药理学。 第二版。 剑桥大学出版社; 2013年。 830-41。 https://doi.org/10.1017/ CBO9780511781933.053。 14。 DörnerT,Kay J.风湿病学生物仿制药:当前的观点和经验教训。 nat Rev Rheumatol。 2015; 11(12):713-24。 https://doi.org/10.1038/ nrrheum.2015.110。 15。 Watson J,Ninh MK,Ashford S等。 麻醉药物和与化学治疗剂的相互作用。 oncol ther。Liu L,Ren B,Zhang H等。中国肾移植接受者中米唑替替替替替替替替替替替替替啶的人群药代动力学分析。移植Proc。2018; 50(8):2392-7。 https:// doi.org/10.1016/j.transproceed.2018.03.030。 12。 Hussain Y,Khan H.免疫抑制药物。 encycl感染免疫。 2022; 4:726-40。https://doi.org/10.1016/b978-0-12-818731-9.00068-9。 13。 Marczin N,Racz K.抗反射药物和免疫抑制剂[Internet]。 in:Evers AS,Maze M,Kharasch ED,编辑。 麻醉药理学。 第二版。 剑桥大学出版社; 2013年。 830-41。 https://doi.org/10.1017/ CBO9780511781933.053。 14。 DörnerT,Kay J.风湿病学生物仿制药:当前的观点和经验教训。 nat Rev Rheumatol。 2015; 11(12):713-24。 https://doi.org/10.1038/ nrrheum.2015.110。 15。 Watson J,Ninh MK,Ashford S等。 麻醉药物和与化学治疗剂的相互作用。 oncol ther。2018; 50(8):2392-7。 https:// doi.org/10.1016/j.transproceed.2018.03.030。12。Hussain Y,Khan H.免疫抑制药物。encycl感染免疫。2022; 4:726-40。https://doi.org/10.1016/b978-0-12-818731-9.00068-9。13。Marczin N,Racz K.抗反射药物和免疫抑制剂[Internet]。 in:Evers AS,Maze M,Kharasch ED,编辑。 麻醉药理学。 第二版。 剑桥大学出版社; 2013年。 830-41。 https://doi.org/10.1017/ CBO9780511781933.053。 14。 DörnerT,Kay J.风湿病学生物仿制药:当前的观点和经验教训。 nat Rev Rheumatol。 2015; 11(12):713-24。 https://doi.org/10.1038/ nrrheum.2015.110。 15。 Watson J,Ninh MK,Ashford S等。 麻醉药物和与化学治疗剂的相互作用。 oncol ther。Marczin N,Racz K.抗反射药物和免疫抑制剂[Internet]。in:Evers AS,Maze M,Kharasch ED,编辑。麻醉药理学。第二版。 剑桥大学出版社; 2013年。 830-41。 https://doi.org/10.1017/ CBO9780511781933.053。 14。 DörnerT,Kay J.风湿病学生物仿制药:当前的观点和经验教训。 nat Rev Rheumatol。 2015; 11(12):713-24。 https://doi.org/10.1038/ nrrheum.2015.110。 15。 Watson J,Ninh MK,Ashford S等。 麻醉药物和与化学治疗剂的相互作用。 oncol ther。第二版。剑桥大学出版社; 2013年。 830-41。 https://doi.org/10.1017/ CBO9780511781933.053。14。DörnerT,Kay J.风湿病学生物仿制药:当前的观点和经验教训。nat Rev Rheumatol。2015; 11(12):713-24。 https://doi.org/10.1038/ nrrheum.2015.110。 15。 Watson J,Ninh MK,Ashford S等。 麻醉药物和与化学治疗剂的相互作用。 oncol ther。2015; 11(12):713-24。 https://doi.org/10.1038/ nrrheum.2015.110。15。Watson J,Ninh MK,Ashford S等。 麻醉药物和与化学治疗剂的相互作用。 oncol ther。Watson J,Ninh MK,Ashford S等。麻醉药物和与化学治疗剂的相互作用。oncol ther。2021; 9(1):121-38。 https://doi.org/10.1007/ S40487-021-00149-1。
1.Rajkomar A、Oren E、Chen K 等人。利用电子健康记录进行可扩展且准确的深度学习。npj 数字医学。2018;1(1):1 – 10。https://doi.org/10.1038/s41746-018-0029-1。2.Paydar S、Pourahmad S、Azad M 等人。利用人工神经网络建立甲状腺结节恶性风险预测模型。《中东癌症杂志》。2016;7(1):47-52。3.Amato F、López A、Peña-Méndez EM、Va ň hara P、Hampl A、Havel J.医学诊断中的人工神经网络。J Appl Biomed。2013; 11(2):47-58。 https://doi.org/10.2478/v10136-012-0031-x。4.莫赫塔尔 AM.未来医院:业务架构视图。马来医学科学杂志。2017;24(5):1-6。 https://doi.org/10.21315/mjms2017.24.5.1。5.Liu X、Faes L、Kale AU 等人。深度学习与医疗保健专业人员在医学影像检测疾病方面的表现比较:系统评价和荟萃分析。柳叶刀数字健康。2019;1(6):e271-e297。https://doi.org/10.1016/s2589-7500 (19)30123-2。6.Nagendran M、Chen Y、Lovejoy CA 等人。人工智能与临床医生:深度学习研究的设计、报告标准和主张的系统回顾。英国医学杂志。2020;368:m689。https://doi.org/10.1136/bmj.m689。7.Panch T、Pearson-Stuttard J、Greaves F、Atun R. 人工智能:公共健康的机遇和风险。柳叶刀数字健康。2019;1 (1):e13-e14。https://doi.org/10.1016/s2589-7500(19)30002-0。8.Landes J、Osimani B、Poellinger R. 药理学中的因果推理的认识论。欧洲哲学杂志。2018;8(1):3-49。 https://doi.org/10。1007/s13194-017-0169-1。9.Abdin AY、Auker-Howlett D、Landes J、Mulla G、Jacob J、Osimani B.审查机械证据评估者 E-synthesis 和 EBM +:阿莫西林和药物反应伴有嗜酸性粒细胞增多和全身症状 (DRESS) 的案例研究。当前药学设计。2019;25(16):1866-1880。https://doi.org/10.2174/1381612825666190628160603。10.De Pretis F,Osimani B.药物警戒计算方法的新见解:E-synthesis,一种用于因果评估的贝叶斯框架。国际环境研究公共卫生杂志。11.2019;16(12):1 – 19。https://doi.org/10.3390/ijerph16122221。De Pretis F、Landes J、Osimani B。E-synthesis:药物监测中因果关系评估的贝叶斯框架。Front Pharmacol 。2019;10:1-20。https://doi.org/10.3389/fphar.2019.01317。12。De Pretis F、Peden W、Landes J、Osimani B。药物警戒作为个性化证据。收录于:Beneduce C、Bertolaso M 编辑。个性化医疗正在形成。从生物学到医疗保健的哲学视角。瑞士 Cham:Springer;2021:19 即将出版。13.那不勒斯 RE。学习贝叶斯网络。Prentice Hall 人工智能系列。新泽西州 Upper Saddle River:Pearson Prentice Hall;2004 年。14.Hill AB。环境与疾病:关联还是因果关系?J R Soc Med。2015;108(1):32-37。本文首次发表于 JRSM 第 58 卷第 5 期,1965 年 5 月。https://doi.org/10.1177/ 0141076814562718。15.Mercuri M、Baigrie B、Upshur RE。从证据到建议:GRADE 能帮我们实现目标吗?J Eval Clin Pract 。2018;24(5):1232- 1239。https://doi.org/10.1111/jep.12857。
1. John APP、Udupa K、Avangapur S 等人。2 型糖尿病患者的心脏自主神经功能障碍:一项针对心率变异性测量的调查性研究。Am J Cardiovasc Dis。2022;12(4):224-232。2. Pop-Busui R、Low PA、Waberski BH 等人。先前强化胰岛素治疗对 1 型糖尿病患者心脏自主神经系统功能的影响:糖尿病控制和并发症试验/糖尿病干预和并发症流行病学研究 (DCCT/EDIC)。循环。2009;119(22):2886-2893。doi:10.1161/CIRCULATIONAHA。108.837369 3. Zoppini G、Cacciatori V、Raimondo D 等人。新诊断 2 型糖尿病患者队列中心血管自主神经病变的患病率:维罗纳新诊断 2 型糖尿病研究(VNDS)。糖尿病护理。2015;38(8):1487-1493。doi: 10.2337/ dc15-0081 4. Low PA、Benrud-Larson LM、Sletten DM 等人。自主神经症状和糖尿病神经病变:一项基于人群的研究。糖尿病护理。2004;27(12):2942-2947。doi: 10.2337/diacare.27.12.2942 5. Chowdhury M、Nevitt S、Eleftheriadou A 等人。 1 型和 2 型糖尿病患者的心脏自主神经病变与心血管疾病及死亡风险:一项荟萃分析。BMJ Open Diabetes Research and Care。2021;9(2):e002480。doi: 10.1136/bmjdrc-2021-002480 6. Pop-Busui R、Evans GW、Gerstein HC 等人。心脏自主神经功能障碍对糖尿病心血管风险控制行动 (ACCORD) 试验中死亡风险的影响。糖尿病护理。2010;33(7):1578-1584。doi: 10.2337/dc10-0125 7. Soedamah-Muthu SS、Chaturvedi N、Witte DR 等人。欧洲1型糖尿病患者危险因素与死亡率的关系:EURODIAB前瞻性并发症研究(PCS)。糖尿病护理。2008;31(7):1360-1366。doi:10.2337/dc08-0107 8. Cox AJ、Azeem A、Yeboah J 等人。心率校正 QT 间期是2型糖尿病患者全因死亡和心血管死亡的独立预测指标:糖尿病心脏研究。糖尿病护理。2014;37(5):1454-1461。doi:10.2337/dc13-1257 9. Rossing P、Breum L、Major-Pedersen A 等人。QTc 间期延长可预测1型糖尿病患者的死亡率。糖尿病医学。 2001;18(3):199-205。doi:10.1046/j.1464-5491.2001.00446.x 10. Wehler D、Jelinek HF、Gronau A 等人。超短心电图记录得出的心率变异性特征的可靠性及其在评估心脏自主神经病变中的有效性。生物医学信号过程控制。2021;68:102651。doi:10.1016/j.bspc。2021.102651 11. Kulkarni AR、Patel AA、Pipal KV 等人。机器学习算法通过心电图无创检测糖尿病和糖尿病前期。BMJ Innov。2023;9(1):32-42。 doi: 10.1136/bmjinnov-2021-000759 12. Ribeiro Pinto J、Cardoso JS、Lourenço A。心电图生物识别技术的演变、当前挑战和未来可能性。IEEE Access。2018;6:34746-34776。doi:10.1109/ACCESS.2018.2849870 13. Aldosari H、Coenen F、Lip GYH、Zheng Y。基于基序的特征向量:面向心血管疾病分类的同质数据表示。在:Golfarelli M、Wrembel R、Kotsis G、Tjoa AM、Khalil I 编辑。大数据分析和知识发现。计算机科学讲义。施普林格国际出版公司;2021 年:235-241。doi:10.1007/978-3-030-86534-4_22 14. Abdel-Jaber H、Devassy D、Al Salam A、Hidaytallah L、EL-Amir M。深度学习算法及其在医疗保健中的应用综述。算法。2022;15(2):71。doi:10.3390/a15020071
1. Aziz A、El-Mowafy O、Paredes S。使用 CAD/CAM 技术制作的锂二硅酸盐玻璃陶瓷冠的临床结果:系统评价。Dent Med Probl。2020;57(2):197-206。2. Marchesi G、Camurri Piloni A、Nicolin V、Turco G、di Lenarda R。椅旁 CAD/CAM 材料:临床应用的当前趋势。生物学。2021;10(11):1170。3. Stawarczyk B、Özcan M、Trottmann A、Schmutz F、Roos M、Hämmerle C。CAD/CAM 树脂块及其牙釉质拮抗剂的双体磨损率。J Prosthet Dent。2013;109(5):325-332。 4. Arif R、Yilmaz B、Johnston WM。用于层压贴面和全冠的 CAD-CAM 修复材料的体外颜色染色性和相对半透明度。J Prosthet Dent。2019;122(2):160-166。5. Corado HPR、da Silveira P、Ortega VL 等人。用于 CAD/CAM 的基于锂二硅酸盐和氧化锆增强锂硅酸盐的玻璃陶瓷的抗弯强度。Int J Biomater。2022;2022:1-9。6. Chen Y、Yeung AWK、Pow EHN、Tsoi JKH。锂二硅酸盐在牙科中的现状和研究趋势:文献计量分析。J Prosthet Dent。2021;126(4):512-522。 7. Abad-Coronel C、Ordoñez Balladares A、Fajardo JI、Martín Biedma BJ。使用 CAD/CAM 系统制造并使用不同热单元和程序结晶的锂二硅酸盐长石修复体的抗断裂性。材料。2021;14(12):3215。8. Lubauer J、Belli R、Peterlik H、Hurle K、Lohbauer U。把握锂的炒作:洞察现代牙科锂硅酸盐玻璃陶瓷。Dent Mater。2021;38:318-332。9. Gürdal I、Atay A、Eichberger M、Cal E、Üsümez A、Stawarczyk B。热循环后 CAD-CAM 材料和复合树脂水泥的颜色变化。J Prosthet Dent。 2018;120(4):546-552。10. Phark JH、Duarte S Jr。新型锂二硅酸盐玻璃陶瓷的微观结构考虑因素:综述。牙科美学修复杂志。2022;34(1):92-103。11. Stawarczyk B、Mandl A、Liebermann A。现代 CAD/CAM 硅酸盐陶瓷及其半透明度以及水热老化对半透明度、马氏硬度、双轴抗弯强度和可靠性的影响。机械行为生物医学材料杂志。2021;118:104-456。12. Gunal B、Ulusoy MM。不同厚度的当代单片 CAD-CAM 修复材料的光学特性。牙科美学修复杂志。2018;30(5):434-441。 13. Sen N、Us YO。整体式 CAD-CAM 修复材料的机械和光学性能。J Prosthet Dent。2018;119(4):593-599。14. Kurt M、Banko glu Güngör M、Karakoca Nemli S、Turhan BB。上釉方法对硅酸盐陶瓷光学和表面性能的影响。J Prosthodont Res。2020;64(2):202-209。15. Donmez MB、Olcay EO、Demirel M。纳米锂二硅酸盐陶瓷在不同老化过程后的抗负载失效性能和光学特性。材料。2022;15(11):4011。 16. Subas¸ ı MG、Alp G、Johnston WM、Yilmaz B. 厚度对单片 CAD-CAM 陶瓷光学特性的影响。J Dent。2018;71:38-42。17. Çakmak G、Donmez MB、Kashkari A、Johnston WM、Yilmaz B。厚度、水泥色度和咖啡热循环对氧化锆增强锂硅酸盐陶瓷光学性能的影响。J Esthet Restor Dent。2021;33(8):1132-1138。18. Zarone F、Ruggiero G、Leone R、Breschi L、Leuci S、Sorrentino R。氧化锆增强锂硅酸盐 (ZLS) 的机械和生物学性能:文献综述。J Dent。2021;109:103661。
促销公司名称 空间选择日期 空间选择时间 16 Bit 2024 年 12 月 4 日星期三 上午 11:25 CST 3d surgical 2024 年 12 月 4 日星期三 上午 11:45 CST 3D Systems 2024 年 12 月 2 日星期一 上午 9:05 CST 4DMedical 2024 年 12 月 3 日星期二 上午 9:20 CST 5C Network 2024 年 12 月 4 日星期三 下午 2:30 CST AbbaDox IDS 2024 年 12 月 2 日星期一 上午 11:05 CST Accessium Group 2024 年 12 月 4 日星期三 下午 2:15 CST ACE Marketing Inc 2024 年 12 月 4 日星期三 下午 2:10 CST Adaptix Ltd 2024 年 12 月 3 日星期二 上午 11:15 CST AdvaHealth Solutions 2024 年 12 月 3 日星期二 下午 4:35 CST AdvaMed 2024 年 12 月 4 日,星期三,下午 2:05 CST AFC Industries Inc 2024 年 12 月 1 日,星期日,下午 3:45 CST Agamon Health 2024 年 12 月 3 日,星期二,下午 4:05 CST AGFA HealthCare 2024 年 11 月 18 日,星期一,下午 3:30 CST AI Medical 2024 年 12 月 4 日,星期三,下午 1:40 CST AI Metrics 2024 年 12 月 3 日,星期二,下午 1:00 CST AI4CMR 2024 年 12 月 4 日,星期三,上午 9:25 CST Aidoc 2024 年 12 月 2 日,星期一,下午 1:45 CST AiimSense Inc. 2024 年 12 月 4 日,星期三,下午 2:30 CST Aikenist Technologies 2024 年 12 月 4 日,星期三,下午 1:40 CST AIRS Medical 2024 年 12 月 1 日,星期日, 2024 年 2:35 PM CST Akumin 2024 年 12 月 2 日星期一下午 3:50 CST Alara 2024 年 12 月 4 日星期三上午 10:10 CST Albatross Projects Americas GPS 2024 年 12 月 4 日星期三下午 2:25 CST Alpha Nodus 2024 年 12 月 4 日星期三上午 8:45 CST Alpha RT 2024 年 12 月 4 日星期三上午 9:50 CST Altamont Software 2024 年 12 月 3 日星期二上午 9:40 CST Altis Labs 2024 年 12 月 4 日星期三上午 9:40 CST AmCad BioMed 2024 年 12 月 3 日星期二下午 4:50 CST 美国放射学会 2024 年 12 月 1 日星期日下午 2:20 CST 美国放射技师协会 2024 年 12 月 1 日星期日下午 4:15 CST AMN Healthcare 星期一,2024 年 12 月 2 日 下午 1:45 CST Amrad Medical/Summit Industries,LLC 星期日,2024 年 12 月 1 日 下午 2:05 CST AMST,Marmon |伯克希尔·哈撒韦公司 2024 年 12 月 2 日星期一 上午 11:10 CST Analogic Corporation 2024 年 12 月 2 日星期一 上午 11:30 CST annalise.ai 2024 年 12 月 3 日星期二 下午 2:05 CST Antmed Corporation 2024 年 12 月 3 日星期二 上午 11:20 CST ANVILOY by Astaras 2024 年 12 月 4 日星期三 下午 2:15 CST AOXIN MEDICAL 2024 年 12 月 4 日星期三 下午 1:00 CST Apollo Enterprise Imaging Corp 2024 年 12 月 3 日星期二 上午 8:50 CST APOLLO RT CORPORATION LIMITED 2024 年 12 月 4 日星期三 上午 9:25 CST Applied Radiology 2024 年 12 月 1 日星期日 下午 4:35 CST ARAMIS Imaging 2024 年 12 月 3 日星期二下午 4:40 CST Arineta 2024 年 12 月 3 日星期二下午 3:50 CST ARRT,美国放射技术人员注册中心 2024 年 12 月 1 日星期日下午 4:35 CST Artera 2024 年 12 月 4 日星期三下午 2:30 CST ASG Superconductors 2024 年 12 月 2 日星期一下午 1:25 CST Aspen Imaging Healthcare 2024 年 12 月 4 日星期三上午 9:45 CST Athelas - RCM 2024 年 12 月 4 日星期三下午 2:35 CST Atirix Medical Systems 2024 年 12 月 3 日星期二下午 1:50 CST AuntMinnie.com | IMV 2024 年 12 月 2 日星期一上午 9:40 CST AVATAR MEDICAL 2024 年 12 月 4 日星期三 9:00 AM CST AWS 2024 年 12 月 2 日星期一下午 4:25 CST Axial3D 2024 年 12 月 3 日星期二下午 1:40 CST Aya Locums 2024 年 12 月 4 日星期三上午 9:50 CST AZmed 2024 年 12 月 3 日星期二下午 2:40 CST
1。Frangoul,H。等。exagamglogene自动赛,用于严重的镰状细胞疾病。n Engl J Med 390,1649–1662(2024)。2。忘记,B。G。胎儿血红蛋白的遗传持久性的分子基础。ann。N. Y. Acad。 SCI。 850,38–44(1998)。 3。 Wienert,B。等。 KLF1在英国HPFH中驱动胎儿血红蛋白的表达。 血液130,803–807(2017)。 4。 Wienert,B。等。 编辑基因组,以引入与胎儿球蛋白增加有关的有益天然发生的突变。 NAT COMUM 6,7085(2015)。 5。 Martyn,G。E.等。 近端启动子中的自然调节突变通过创建从头GATA1部位来提高胎儿球蛋白表达。 血液133,852–856(2019)。 6。 Martyn,G。E.等。 自然调节突变通过破坏BCL11A或ZBTB7A结合来提升胎儿球蛋白基因。 nat Genet 50,498–503(2018)。 7。 Frati,G。等。 CRISPR-CAS9治疗镰状细胞病的安全性和功效研究突出了特异性疾病的反应。 mol ther s1525-0016(24)00470–2(2024)doi:10.1016/j.ymthe.2024.07.015。 8。 Anzalone,A。V。等。 搜索和重新固定基因组编辑,无需双链断裂或供体DNA。 自然576,149–157(2019)。 9。 Coleman,M。B.等。 am。 J. Hematol。 42,186–190(1993)。 10。 Chen,P。J.等。N. Y. Acad。SCI。 850,38–44(1998)。 3。 Wienert,B。等。 KLF1在英国HPFH中驱动胎儿血红蛋白的表达。 血液130,803–807(2017)。 4。 Wienert,B。等。 编辑基因组,以引入与胎儿球蛋白增加有关的有益天然发生的突变。 NAT COMUM 6,7085(2015)。 5。 Martyn,G。E.等。 近端启动子中的自然调节突变通过创建从头GATA1部位来提高胎儿球蛋白表达。 血液133,852–856(2019)。 6。 Martyn,G。E.等。 自然调节突变通过破坏BCL11A或ZBTB7A结合来提升胎儿球蛋白基因。 nat Genet 50,498–503(2018)。 7。 Frati,G。等。 CRISPR-CAS9治疗镰状细胞病的安全性和功效研究突出了特异性疾病的反应。 mol ther s1525-0016(24)00470–2(2024)doi:10.1016/j.ymthe.2024.07.015。 8。 Anzalone,A。V。等。 搜索和重新固定基因组编辑,无需双链断裂或供体DNA。 自然576,149–157(2019)。 9。 Coleman,M。B.等。 am。 J. Hematol。 42,186–190(1993)。 10。 Chen,P。J.等。SCI。850,38–44(1998)。 3。 Wienert,B。等。 KLF1在英国HPFH中驱动胎儿血红蛋白的表达。 血液130,803–807(2017)。 4。 Wienert,B。等。 编辑基因组,以引入与胎儿球蛋白增加有关的有益天然发生的突变。 NAT COMUM 6,7085(2015)。 5。 Martyn,G。E.等。 近端启动子中的自然调节突变通过创建从头GATA1部位来提高胎儿球蛋白表达。 血液133,852–856(2019)。 6。 Martyn,G。E.等。 自然调节突变通过破坏BCL11A或ZBTB7A结合来提升胎儿球蛋白基因。 nat Genet 50,498–503(2018)。 7。 Frati,G。等。 CRISPR-CAS9治疗镰状细胞病的安全性和功效研究突出了特异性疾病的反应。 mol ther s1525-0016(24)00470–2(2024)doi:10.1016/j.ymthe.2024.07.015。 8。 Anzalone,A。V。等。 搜索和重新固定基因组编辑,无需双链断裂或供体DNA。 自然576,149–157(2019)。 9。 Coleman,M。B.等。 am。 J. Hematol。 42,186–190(1993)。 10。 Chen,P。J.等。850,38–44(1998)。3。Wienert,B。等。 KLF1在英国HPFH中驱动胎儿血红蛋白的表达。 血液130,803–807(2017)。 4。 Wienert,B。等。 编辑基因组,以引入与胎儿球蛋白增加有关的有益天然发生的突变。 NAT COMUM 6,7085(2015)。 5。 Martyn,G。E.等。 近端启动子中的自然调节突变通过创建从头GATA1部位来提高胎儿球蛋白表达。 血液133,852–856(2019)。 6。 Martyn,G。E.等。 自然调节突变通过破坏BCL11A或ZBTB7A结合来提升胎儿球蛋白基因。 nat Genet 50,498–503(2018)。 7。 Frati,G。等。 CRISPR-CAS9治疗镰状细胞病的安全性和功效研究突出了特异性疾病的反应。 mol ther s1525-0016(24)00470–2(2024)doi:10.1016/j.ymthe.2024.07.015。 8。 Anzalone,A。V。等。 搜索和重新固定基因组编辑,无需双链断裂或供体DNA。 自然576,149–157(2019)。 9。 Coleman,M。B.等。 am。 J. Hematol。 42,186–190(1993)。 10。 Chen,P。J.等。Wienert,B。等。KLF1在英国HPFH中驱动胎儿血红蛋白的表达。血液130,803–807(2017)。4。Wienert,B。等。 编辑基因组,以引入与胎儿球蛋白增加有关的有益天然发生的突变。 NAT COMUM 6,7085(2015)。 5。 Martyn,G。E.等。 近端启动子中的自然调节突变通过创建从头GATA1部位来提高胎儿球蛋白表达。 血液133,852–856(2019)。 6。 Martyn,G。E.等。 自然调节突变通过破坏BCL11A或ZBTB7A结合来提升胎儿球蛋白基因。 nat Genet 50,498–503(2018)。 7。 Frati,G。等。 CRISPR-CAS9治疗镰状细胞病的安全性和功效研究突出了特异性疾病的反应。 mol ther s1525-0016(24)00470–2(2024)doi:10.1016/j.ymthe.2024.07.015。 8。 Anzalone,A。V。等。 搜索和重新固定基因组编辑,无需双链断裂或供体DNA。 自然576,149–157(2019)。 9。 Coleman,M。B.等。 am。 J. Hematol。 42,186–190(1993)。 10。 Chen,P。J.等。Wienert,B。等。编辑基因组,以引入与胎儿球蛋白增加有关的有益天然发生的突变。NAT COMUM 6,7085(2015)。 5。 Martyn,G。E.等。 近端启动子中的自然调节突变通过创建从头GATA1部位来提高胎儿球蛋白表达。 血液133,852–856(2019)。 6。 Martyn,G。E.等。 自然调节突变通过破坏BCL11A或ZBTB7A结合来提升胎儿球蛋白基因。 nat Genet 50,498–503(2018)。 7。 Frati,G。等。 CRISPR-CAS9治疗镰状细胞病的安全性和功效研究突出了特异性疾病的反应。 mol ther s1525-0016(24)00470–2(2024)doi:10.1016/j.ymthe.2024.07.015。 8。 Anzalone,A。V。等。 搜索和重新固定基因组编辑,无需双链断裂或供体DNA。 自然576,149–157(2019)。 9。 Coleman,M。B.等。 am。 J. Hematol。 42,186–190(1993)。 10。 Chen,P。J.等。NAT COMUM 6,7085(2015)。5。Martyn,G。E.等。近端启动子中的自然调节突变通过创建从头GATA1部位来提高胎儿球蛋白表达。血液133,852–856(2019)。6。Martyn,G。E.等。自然调节突变通过破坏BCL11A或ZBTB7A结合来提升胎儿球蛋白基因。nat Genet 50,498–503(2018)。7。Frati,G。等。CRISPR-CAS9治疗镰状细胞病的安全性和功效研究突出了特异性疾病的反应。mol ther s1525-0016(24)00470–2(2024)doi:10.1016/j.ymthe.2024.07.015。8。Anzalone,A。V。等。搜索和重新固定基因组编辑,无需双链断裂或供体DNA。自然576,149–157(2019)。9。Coleman,M。B.等。am。J. Hematol。42,186–190(1993)。 10。 Chen,P。J.等。42,186–190(1993)。10。Chen,P。J.等。Chen,P。J.等。g伽玛A伽马(β+)胎儿血红蛋白的遗传持久性:g伽玛-158 c-> t在顺式中与-175 t-> c c gamma-lobin基因的突变会导致G Gama-- gamma基因的增加导致G Gama-Globobin的增加。通过操纵细胞决定因素的编辑结果来增强质量编辑系统。Cell 184,5635-5652.E29(2021)。 11。 Ravi,N。S.等。 通过CRISPR基础编辑来识别新型HPFH样突变,从而提高了胎儿血红蛋白的表达。 Elife 11,E65421(2022)。 12。 Kim,H。K.等。 预测人类细胞中主要编辑指南RNA的效率。 nat Biotechnol(2020)doi:10.1038/s41587-020-0677-y。 13。 Nelson,J。W.等。 设计的Pegrnas提高了主要的编辑效率。 NAT生物技术40,402–410(2022)。 14。 Habib,O.,Habib,G.,Hwang,G.-H。 &Bae,S。人类胚胎干细胞中主要编辑结果的全面分析。 核酸Res 50,1187–1197(2022)。 15。 Lee,J。等。 prime用真正的cas9 nickases编辑最大程度地减少了不需要的indels。 nat Commun 14,1786(2023)。 16。 Antoniou,P。等。 基础编辑介导的γ-球蛋白顺式调节元件的解剖,用于胎儿血红蛋白表达的治疗重新激活。 nat Commun 13,6618(2022)。 17。 Pavani,G。等。 通过人类造血干细胞中α-珠蛋白基因座的CRISPR/CAS9编辑对β-丘脑的抗性。 血液Adv 5,1137–1153(2021)。 18。Cell 184,5635-5652.E29(2021)。11。Ravi,N。S.等。 通过CRISPR基础编辑来识别新型HPFH样突变,从而提高了胎儿血红蛋白的表达。 Elife 11,E65421(2022)。 12。 Kim,H。K.等。 预测人类细胞中主要编辑指南RNA的效率。 nat Biotechnol(2020)doi:10.1038/s41587-020-0677-y。 13。 Nelson,J。W.等。 设计的Pegrnas提高了主要的编辑效率。 NAT生物技术40,402–410(2022)。 14。 Habib,O.,Habib,G.,Hwang,G.-H。 &Bae,S。人类胚胎干细胞中主要编辑结果的全面分析。 核酸Res 50,1187–1197(2022)。 15。 Lee,J。等。 prime用真正的cas9 nickases编辑最大程度地减少了不需要的indels。 nat Commun 14,1786(2023)。 16。 Antoniou,P。等。 基础编辑介导的γ-球蛋白顺式调节元件的解剖,用于胎儿血红蛋白表达的治疗重新激活。 nat Commun 13,6618(2022)。 17。 Pavani,G。等。 通过人类造血干细胞中α-珠蛋白基因座的CRISPR/CAS9编辑对β-丘脑的抗性。 血液Adv 5,1137–1153(2021)。 18。Ravi,N。S.等。通过CRISPR基础编辑来识别新型HPFH样突变,从而提高了胎儿血红蛋白的表达。Elife 11,E65421(2022)。12。Kim,H。K.等。 预测人类细胞中主要编辑指南RNA的效率。 nat Biotechnol(2020)doi:10.1038/s41587-020-0677-y。 13。 Nelson,J。W.等。 设计的Pegrnas提高了主要的编辑效率。 NAT生物技术40,402–410(2022)。 14。 Habib,O.,Habib,G.,Hwang,G.-H。 &Bae,S。人类胚胎干细胞中主要编辑结果的全面分析。 核酸Res 50,1187–1197(2022)。 15。 Lee,J。等。 prime用真正的cas9 nickases编辑最大程度地减少了不需要的indels。 nat Commun 14,1786(2023)。 16。 Antoniou,P。等。 基础编辑介导的γ-球蛋白顺式调节元件的解剖,用于胎儿血红蛋白表达的治疗重新激活。 nat Commun 13,6618(2022)。 17。 Pavani,G。等。 通过人类造血干细胞中α-珠蛋白基因座的CRISPR/CAS9编辑对β-丘脑的抗性。 血液Adv 5,1137–1153(2021)。 18。Kim,H。K.等。预测人类细胞中主要编辑指南RNA的效率。nat Biotechnol(2020)doi:10.1038/s41587-020-0677-y。13。Nelson,J。W.等。设计的Pegrnas提高了主要的编辑效率。NAT生物技术40,402–410(2022)。14。Habib,O.,Habib,G.,Hwang,G.-H。 &Bae,S。人类胚胎干细胞中主要编辑结果的全面分析。 核酸Res 50,1187–1197(2022)。 15。 Lee,J。等。 prime用真正的cas9 nickases编辑最大程度地减少了不需要的indels。 nat Commun 14,1786(2023)。 16。 Antoniou,P。等。 基础编辑介导的γ-球蛋白顺式调节元件的解剖,用于胎儿血红蛋白表达的治疗重新激活。 nat Commun 13,6618(2022)。 17。 Pavani,G。等。 通过人类造血干细胞中α-珠蛋白基因座的CRISPR/CAS9编辑对β-丘脑的抗性。 血液Adv 5,1137–1153(2021)。 18。Habib,O.,Habib,G.,Hwang,G.-H。 &Bae,S。人类胚胎干细胞中主要编辑结果的全面分析。核酸Res 50,1187–1197(2022)。15。Lee,J。等。 prime用真正的cas9 nickases编辑最大程度地减少了不需要的indels。 nat Commun 14,1786(2023)。 16。 Antoniou,P。等。 基础编辑介导的γ-球蛋白顺式调节元件的解剖,用于胎儿血红蛋白表达的治疗重新激活。 nat Commun 13,6618(2022)。 17。 Pavani,G。等。 通过人类造血干细胞中α-珠蛋白基因座的CRISPR/CAS9编辑对β-丘脑的抗性。 血液Adv 5,1137–1153(2021)。 18。Lee,J。等。prime用真正的cas9 nickases编辑最大程度地减少了不需要的indels。nat Commun 14,1786(2023)。16。Antoniou,P。等。基础编辑介导的γ-球蛋白顺式调节元件的解剖,用于胎儿血红蛋白表达的治疗重新激活。nat Commun 13,6618(2022)。17。Pavani,G。等。通过人类造血干细胞中α-珠蛋白基因座的CRISPR/CAS9编辑对β-丘脑的抗性。血液Adv 5,1137–1153(2021)。18。Everette,K。A.等。在体内造血干细胞的体内质量编辑促进小鼠植入后镰状细胞疾病表型。nat Biomed Eng 7,616–628(2023)。19。Peterka,M。等。利用DSB修复以促进有效的同源性依赖性和 - 独立的质量编辑。nat Commun 13,1240(2022)。20。Magnani,A。等。对镰状细胞疾病的同种异体移植后混合嵌合体患者进行了广泛的多系数分析:对基因治疗的造血和植入阈值的见解。Haematologica 105,1240–1247(2020)。21。Sun,Y。等。 在小鼠中耐用基因校正的肺部干细胞的体内编辑。 科学384,1196–1202(2024)。 22。 Doman,J。L.等。 噬菌体辅助进化和蛋白质工程产生紧凑,有效的主要编辑者。 单元格186,3983-4002.E26(2023)。 23。 Wimberger,S。等。 同时抑制DNA-PK和POLθ提高了基因组编辑的整合效率和精度。 nat Commun 14,4761(2023)。 24。 Yan,J。等。 用内源性的小RNA结合蛋白改善原始编辑。 自然628,639–647(2024)。 25。 Levesque,S.,Cosentino,A.,Verma,A.,Genovese,P。&Bauer,D。E.通过调节核苷酸代谢,增强造血干和祖细胞中的质量编辑。 nat Biotechnol(2024)doi:10.1038/s41587-024-02266-4。 26。 核酸res。Sun,Y。等。在小鼠中耐用基因校正的肺部干细胞的体内编辑。 科学384,1196–1202(2024)。 22。 Doman,J。L.等。 噬菌体辅助进化和蛋白质工程产生紧凑,有效的主要编辑者。 单元格186,3983-4002.E26(2023)。 23。 Wimberger,S。等。 同时抑制DNA-PK和POLθ提高了基因组编辑的整合效率和精度。 nat Commun 14,4761(2023)。 24。 Yan,J。等。 用内源性的小RNA结合蛋白改善原始编辑。 自然628,639–647(2024)。 25。 Levesque,S.,Cosentino,A.,Verma,A.,Genovese,P。&Bauer,D。E.通过调节核苷酸代谢,增强造血干和祖细胞中的质量编辑。 nat Biotechnol(2024)doi:10.1038/s41587-024-02266-4。 26。 核酸res。在小鼠中耐用基因校正的肺部干细胞的体内编辑。科学384,1196–1202(2024)。22。Doman,J。L.等。噬菌体辅助进化和蛋白质工程产生紧凑,有效的主要编辑者。单元格186,3983-4002.E26(2023)。23。Wimberger,S。等。同时抑制DNA-PK和POLθ提高了基因组编辑的整合效率和精度。nat Commun 14,4761(2023)。24。Yan,J。等。 用内源性的小RNA结合蛋白改善原始编辑。 自然628,639–647(2024)。 25。 Levesque,S.,Cosentino,A.,Verma,A.,Genovese,P。&Bauer,D。E.通过调节核苷酸代谢,增强造血干和祖细胞中的质量编辑。 nat Biotechnol(2024)doi:10.1038/s41587-024-02266-4。 26。 核酸res。Yan,J。等。用内源性的小RNA结合蛋白改善原始编辑。自然628,639–647(2024)。25。Levesque,S.,Cosentino,A.,Verma,A.,Genovese,P。&Bauer,D。E.通过调节核苷酸代谢,增强造血干和祖细胞中的质量编辑。nat Biotechnol(2024)doi:10.1038/s41587-024-02266-4。26。核酸res。Brinkman,E。K.,Chen,T.,Amendola,M。&Van Steensel,B。通过序列痕量分解对基因组编辑的易于定量评估。42,E168(2014)。 27。 Brusson,M。等。 新型的慢病毒载体,用于结合基因添加和基因沉默策略的镰状细胞疾病基因治疗。 mol the核酸32,229–246(2023)。 28。 Gaudelli,N。M.等。 腺嘌呤基础编辑者的定向演变,活动增加和42,E168(2014)。27。Brusson,M。等。 新型的慢病毒载体,用于结合基因添加和基因沉默策略的镰状细胞疾病基因治疗。 mol the核酸32,229–246(2023)。 28。 Gaudelli,N。M.等。 腺嘌呤基础编辑者的定向演变,活动增加和Brusson,M。等。新型的慢病毒载体,用于结合基因添加和基因沉默策略的镰状细胞疾病基因治疗。mol the核酸32,229–246(2023)。28。Gaudelli,N。M.等。腺嘌呤基础编辑者的定向演变,活动增加和
Wiley 或 Hindawi 拥有的 E-ISSN 标题 通用主题类别 Hindawi 1687-0409 摘要与应用分析 摘要与应用分析 Wiley 2578-5745 ACR Open Rheumatology 风湿病学 Hindawi 1600-0404 Acta Neurologica Scandinavica 神经病学 Wiley 1600-0412 Acta Obstretricia et Gynecologia Scandinavica 妇产科 Hindawi 1563-5031 有源和无源电子元件 电子元件 Wiley 2052-8817 急症医学与外科 急诊医学 Wiley 2199-160X 先进电子材料 N/A Wiley 2699-9412 先进能源与可持续性研究 N/A Wiley 2641-6573 先进遗传学 遗传学 Wiley 2640-4567 先进智能系统 电气与电子工程 Wiley 2196-7350 先进材料界面 N/A Wiley 2699-9307 先进纳米生物医学研究 N/A Wiley 2699-9293 先进光子学研究 N/A Wiley 2751-1200 先进物理研究 N/A Wiley 2198-3844 先进科学 N/A Wiley 2751-1219 先进传感器研究 N/A Hindawi 2314-7539 农业进展 农业 Hindawi 1687-7977 天文学进展 天文学、天体物理学和宇宙学 Hindawi 2573-8461 细胞和基因治疗进展 血液学 Hindawi 1687-8094 土木工程进展 土木工程 Hindawi 1687-8124 凝聚态物理学进展 凝聚态物理学 Hindawi 1687-711X 进展模糊系统进展 模糊系统 Hindawi 1687-9112 血液学进展 血液学 Hindawi 1687-7365 高能物理学进展 高能物理学 Hindawi 1687-5907 人机交互进展 交互系统 Hindawi 1687-8442 材料科学与工程进展 材料科学 Hindawi 1687-9139 数学物理学进展 数学物理学 Hindawi 2314-758X 医学进展 医学 Hindawi 1687-9317 气象学进展 气象学 Hindawi 1687-5699 多媒体技术进展 多媒体系统 Hindawi 1687-9155 运筹学进展 运筹学 Hindawi 2090-3472 骨科进展 骨科保健 Hindawi 2633-4690 药理学和制药科学进展 药理学和药剂学 Hindawi 1098-2329 聚合物技术进展 聚合物技术 Hindawi 2090-3499 预防医学进展 预防医学 Hindawi 2314-7784 公共卫生进展 公共卫生 Hindawi 1687-5923 摩擦学进展 摩擦学 Hindawi 1687-6377 泌尿学进展 泌尿学 Hindawi 1687-8647 病毒学进展 病毒和病毒性疾病 Wiley 2692-4560 聚合材料科学 Wiley 2643-8909 衰老和癌症 肿瘤学和放射疗法 Wiley 1474-9726 衰老细胞 细胞与分子生物学 Wiley 2475-0360 衰老医学 老年医学 Wiley 2471-9625 农业与环境快报 农业 Wiley 2769-2485 农业与应用经济协会 N/A Wiley 2639-6696 农业系统,地球科学与环境 农业 Wiley 2576-604X AGU Advances N/A Wiley 2371-9621 AI Magazine N/A Hindawi 2090-1259 艾滋病研究与治疗 辅助研究 Wiley 2352-8729 阿尔茨海默氏症与痴呆症:诊断、评估与疾病监测 细胞与分子生物学 Wiley 2352-8737 阿尔茨海默氏症与痴呆症:转化研究与临床干预 神经病学 Hindawi 2210-7185 分析细胞病理学 细胞病理学 Wiley 2628-5452 分析科学进展 化学 Hindawi 1439-0272 男科学 泌尿学 Hindawi 2090-1275 贫血 贫血 Hindawi 1687-6970 麻醉学研究与实践 麻醉学 Wiley 2576-2095 动物模型和实验医学 普通和入门医学科学 Wiley 2328-9503 临床和转化神经病学年鉴(电子) 神经病学 Wiley 2475-0328 胃肠外科年鉴 外科和外科专业 Wiley 1542-474X 非侵入性心电图年鉴 心血管疾病 Wiley 2831-3267 儿童神经病学学会年鉴 N/A Wiley 2168-0450 植物科学中的应用 植物科学 Wiley 2689-5595 应用 AI 快报 信息科学与技术 Hindawi 1687-7675 应用和环境土壤科学 土壤科学 Hindawi 1754-2103 应用仿生学和生物力学 生物力学 Hindawi 1687-9732 应用计算智能和软计算 计算智能和软计算 Hindawi 1365-2095 水产养殖营养 水产养殖、渔业与鱼类科学 Hindawi 1365-2109 水产养殖研究 水产养殖、渔业与鱼类科学 Wiley 2693-8847 水产养殖、鱼类与渔业 水产养殖、渔业与鱼类科学 Hindawi 1472-3654 古菌 古菌 Wiley 2050-2680 亚洲和太平洋政策研究 经济学 Wiley 1530-261X 大气科学快报 地球科学 Hindawi 2090-1933 自闭症研究与治疗 自闭症 Hindawi 2090-0430 自身免疫性疾病 自身免疫 Wiley 2768-1696 电池能源 电气与电子工程 Hindawi 1875-8584 行为神经病学 认知神经科学 Hindawi 2090-2255 国际生物化学研究 生物化学 Wiley 2380-6761 生物工程与转化医学 化学 Hindawi 1687-479X 生物无机化学及应用 生物无机化学及其应用 Hindawi 2314-6141 国际生物医学研究 生命科学与医学 Wiley 2405-4518 生物表面和生物摩擦学 N/A Wiley 2688-4526 BJUI Compass 泌尿学 Wiley 2751-7446 BMEMat N/A Wiley 1502-3885 Boreas 地球科学 Wiley 2162-3279 脑和行为神经病学 Wiley 1750-3639 脑病理学 病理学 Wiley 2468-2322 CAAI 智能技术交易 计算机科学 Wiley 1891-1803 Campbell 系统评价 N/A Hindawi 2291-2797 加拿大胃肠病学和肝病学杂志 胃肠病学和肝病学 Hindawi 1918-1493 加拿大传染病和医学微生物学杂志 传染病 Hindawi 1916-7245 加拿大呼吸杂志 呼吸医学 Wiley 2523-3548 癌症通讯肿瘤学和放射治疗 Wiley 2770-9183 癌症创新 N/A Wiley 2045-7634 癌症医学肿瘤学和放射治疗 Wiley 2573-8348 癌症报告肿瘤学和放射治疗