共晶SN-CU合金认为是有毒SN-PB焊料合金的潜在替代品之一。这项工作旨在通过研究每种需要x = 0.3和0.5 wt。%的需要次的需要次的鞭毛(BI)和银(Ag)含量的影响,从而提高共晶SN-SCU合金的机械性能,每种需要次的需要次的需要次鞭毛(BI)和银(Ag)含量对As- castectic Eutectic eutectic sn-cu alloy的机械性能的影响。使用X射线衍射(XRD)和蠕变测试机研究了三元AS-Cast Sn-Cu-X(X = BI或Ag)合金。 结果表明,在Eutectic Sn-Cu合金中添加0.3和0.5 wt。%的BI添加不会促进CU6SN5 IMC的形成,而只是将其从102转移到202个方向。 上述BI添加已完善了β-SN粒径和扩大的Cu6SN5 IMC,因此减少了晶格失真,通过在室温下(RT)的不同载荷(RT),通过拉伸载荷通过拉伸载荷来直接增强了这些AS铸造合金的机械性能和可靠性。 将BI的0.3和0.5 wt。在铸物的共晶合金中加入其他IMC(AG3SN),与Cu6Sn5相形成了其他IMC(AG3SN),由于其不同的晶体结构(AG3SN(orthorhombombic)和Cu6sn5(hex)),与其匹配的CU6SN5相位不匹配它。 为此,结构稳定性下降,导致外力的电阻较低,机械可靠性低。 机械改进(高破裂时间(5498.85 s),低应变速率和应力指数(9.48))已与BI添加0.5 wt。与其他添加相比,BI添加0.5 wt。与其高结构稳定性密切相关。三元AS-Cast Sn-Cu-X(X = BI或Ag)合金。结果表明,在Eutectic Sn-Cu合金中添加0.3和0.5 wt。%的BI添加不会促进CU6SN5 IMC的形成,而只是将其从102转移到202个方向。上述BI添加已完善了β-SN粒径和扩大的Cu6SN5 IMC,因此减少了晶格失真,通过在室温下(RT)的不同载荷(RT),通过拉伸载荷通过拉伸载荷来直接增强了这些AS铸造合金的机械性能和可靠性。将BI的0.3和0.5 wt。在铸物的共晶合金中加入其他IMC(AG3SN),与Cu6Sn5相形成了其他IMC(AG3SN),由于其不同的晶体结构(AG3SN(orthorhombombic)和Cu6sn5(hex)),与其匹配的CU6SN5相位不匹配它。为此,结构稳定性下降,导致外力的电阻较低,机械可靠性低。机械改进(高破裂时间(5498.85 s),低应变速率和应力指数(9.48))已与BI添加0.5 wt。与其他添加相比,BI添加0.5 wt。与其高结构稳定性密切相关。从机械的角度来看,建议使用SN-0.7CU-0.5BI合金成为大规模生产和加工焊接和电子组件的最可靠合金。
摘要:研究了含有石墨烯纳米片(GNS)的基于乙二烯 - 偏烯 - 烯烯 - 二烯单体(EPDM)单体(EPDM)单体(EPDM)的复合材料的机械,热和γ辐射衰减特性。还研究了聚乙烯乙二醇(PEG)作为兼容器来改善填充剂的分散体。结果表明,与EPDM相比,这些填充剂的综合使用导致机械性能的急剧增加,分别达到了伸缩强度和伸长率的123%和83%。相反,与基于EPDM/B/GN的复合材料相比,在包含EPDM GN和B的复合材料中添加PEG的复合材料具有较低的机械性能。然而,PEG的存在导致获得具有大量衰减系数的复合材料(EPDM/B/GNP),可对伽玛辐射(137 cs,662 keV)优于没有PEG的该复合材料。此外,复合EPDM,B和PEG在断裂时表现出伸长率153%,高于未填充的EPDM。此外,与未填充的EPDM相比,由100个PHR(III)氧化物(III)PHR组成的二元填充系统可导致EPDM复合材料的61%线性阻尼系数达到61%。分别使用扫描电子显微镜和能量分散X射线光谱获得的聚合物基质中形态和填充剂的状态的研究为理解影响伽马射线衰减特性的因素提供了有用的背景。最后,结果还表明,通过调整配方,可以调整用氧化物和石墨烯纳米纤维素增强的EPDM复合材料的机械和热性能。
添加剂制造(AM)工艺,例如激光粉末床融合,可以通过分层扩散和熔化粉末来制造物体,直到创建自由形式的零件形状。为了提高AM过程中涉及的材料的特性,重要的是要预测材料表征作为处理条件的函数。在热电材料中,功率因数是对材料如何将热量转化为电的有效性的量度。虽然较早的作品已经使用各种技术预测了不同热电材料的材料表征特性,但在AM过程中尚未探索机器学习模型的实现,以预测鞭毛尿酸酯(BI2TE3)的功率因数。这很重要,因为BI2TE3是低温应用的标准材料。作为概念证明,我们使用了有关涉及的制造处理参数的数据以及在BI2TE3 AM中收集的原位传感器监视数据,以训练不同的机器学习模型,以预测其热电功率因子。我们使用80%的培训和20%的测试数据实施了监督的机器学习技术,并进一步使用了置换功能重要性方法来识别重要的处理参数和原位传感器功能,这些特征最能预测材料的功率因数。基于合奏的方法,例如随机森林,Adaboost分类器和Bagging分类器,在预测功率因数方面表现最好,而袋装分类器模型则达到了90%的最高精度。此外,我们发现了前15个处理参数和原位传感器功能,以表征材料制造属性(例如功率因子)。这些功能可以进一步优化,以最大程度地提高热电材料的功率因数,并提高使用该材料制造的产品的质量。
摘要 尽管在癌症治疗领域付出了诸多努力,但由于肿瘤细胞的异质性,使用传统单一疗法治疗时治疗效果不佳,因此癌症治疗必须从单一疗法转向联合疗法才能完全治愈癌症。具有治疗功能的多功能铋 (Bi) 基纳米材料 (NM) 因其低毒性、X 射线敏感能力、高原子序数、近红外驱动的半导体特性和低成本而在癌症诊断和治疗领域具有巨大的前景。本文全面回顾了 Bi 基 NM 在各种医学方面的最新进展,包括:评估肿瘤部位积累、肿瘤靶向和治疗性能,以及 Bi 基 NM 介导的主要单一疗法的特点、优点和缺点。此外,还详细描述了两种或多种单一疗法之间的协同增强机制,以解决癌症治疗中的常见挑战,例如多药耐药性、缺氧和转移。最后,本综述为多模式协同疗法的设计提供了新的见解,为 Bi-based NMs 未来的潜在临床应用提供了参考。
印刷电子是一个充满活力的研究和技术领域,可获得按需功能元件。[1–3] 近年来,已报道了具有半导体、[4] 光电、[5] 储能[6] 和磁性 [7] 特性的印刷电子。特别是印刷磁阻传感器已证明其作为非接触式电磁开关 [8,9] 和非接触式交互式皮肤平台的相关性。[10] 这些磁敏感复合材料是通过将铁磁磁阻 (MR) 颗粒或薄片分散在各种凝胶状或热塑性粘合剂溶液中而制成的(表 1)。[9–17] 虽然这些贡献在过去十年中显著推动了该领域的发展,但由于组成颗粒或薄片的复杂性和高生产成本,这些技术的大规模应用仍未实现。表现出高达 37% 的巨磁电阻效应 (GMR) 的薄片由多层异质结构组成,需要逐层沉积亚纳米厚的薄膜。[9–13] 需要精确调整层的厚度以实现可测量的磁阻变化。这导致表现出 GMR 的粉末的生产成本增加。为了解决 GMR 粉末的可扩展性问题,采用了表现出各向异性磁阻 (AMR) 的商品可用铁磁材料颗粒。[14] 然而,测得的 AMR 效应降低到 0.34%。此外,这些 MR 技术通常在 500 mT 以下的磁场下具有线性响应,并且在此之外几乎不敏感。缺乏一种具有强磁阻信号并在宽磁场范围内工作的可打印商品级材料。使用打印技术瞄准更广泛的磁场可以实现新型低成本技术解决方案,从非接触式开关应用到机械的工业监控。采用传统的印刷方法实现大规模生产和高磁场下的线性响应需要新材料的开发。
然而,在光电设备中,PB对应物的高性能,最近的努力,尤其是在CS 2 Agbibr 6双PSK上,[2]证明了它们在太阳能电池的广泛应用中的强大用途,[3-9] [3-9]光探测器,[10,11] x射线检测器,[10,11] X射线检测器[12] memristors [13] Memristors [13] 13]。[14] Moreover, when passing from the 3D double PSK toward its layered counterparts with two (2L) or one (1L) octahedra layers by introducing large A-site organic cations, such as butylam- monium (BA) or propylammonium (PA), allowed to develop new two-dimensional (2D) materials with tunable optoelec- tronic properties, such as the character of the bandgap as well as带隙的能量从≈2eV到≈3eV,这与无机晶格的失真有关。[15–19]尺寸还原也明显提高了候选人的ON/OFF比率,从10 2(CS 2 Ag-Birb 6至3d)到10 7(((Ba)2 Csagbibr 7),因为在扭曲的晶体结构中,离子迁移受到离子迁移的青睐。[20]从(Ba)2 Csagbibr 7中获得了具有较大迁移率的产物的X射线光绘制器,其中敏感性取决于晶体的尺寸(八面体层的数量)。[21,22]光电探测器的时间响应可以通过尺寸减小来增强,同时保持相似的检测率; [23]
热电发电机在航空航天和飞机应用方面具有巨大潜力。然而,传统的热电设备制造方法严重限制了设备的适应性,从而限制了其市场化程度。激光粉末床熔化是一种增材制造方法,在生产热电设备方面显示出巨大的潜力。与金属相比,热电材料由于导热系数低、脆性断裂特性和不规则粉末颗粒形貌而面临独特的挑战。本文,我们介绍了通过激光粉末床熔化制造 Bi 2 Te 3 热电部件的加工程序。我们确定了关键工艺参数的成功组合——激光功率、扫描速度、扫描距离和粉末层厚度——以获得在密度和物理性能方面高质量的部件,并且我们展示了工艺参数变化对成品部件质量的影响。虽然体积能量密度不能唯一地决定部件质量,但它是确定热电材料工艺参数的有用指南,对于 Bi 2 Te 3 ,最佳值在 9 到 11 J/mm 3 之间。我们成功制备了不同自由形状的Bi 2 Te 3 粉末。结果表明,该方法可以更广泛地扩展到其他半导体材料,包括适用于空间应用的热电发电材料。
激光型二极管二极管Ytterbium纤维激光扫描仪类型IPG中能扫描仪操作模式CW功率0-100 W波长(NM)1070点斑点尺寸(μm)50
图 2 (a) A7 菱面体晶胞中 A 1g(纵向,橙色箭头)和 E g(横向,蓝色箭头)模式的示意图。坐标为六边形索引,即 z 轴为六边形 (001),对应于菱面体索引中的 (111) 平面。在平衡状态下,晶胞内的 Bi 原子(绿色原子)位于对角轴上的 (0.48:0.52) 位置。虚线圆标记了沿对角轴的中心位置。(b) Bi 薄膜的拉曼光谱,范围从 4 nm 到 80 nm。80 nm 和 50 nm 薄膜中的特征 E g 和 A 1g 模式以橙色垂直线标记作为参考。