2. 电力系统:放射性同位素电力推进 (REP):利用钚-238 等同位素自然放射性衰变产生的热量来发电。REP 系统紧凑可靠,是小型到中型任务的理想选择,尤其是在可以接受长时间运行和低功率要求的情况下。它们通常提供 1 千瓦范围内的功率,足以为科学仪器和低推力推进系统(如离子发动机)供电。旅行者号、好奇号和毅力号等著名任务已成功展示了该技术和任务可靠性。裂变电力推进 (FEP):它们依靠核反应堆通过受控核裂变反应发电。与 REP 不同,FEP 系统可以产生更高的功率,通常在 8-10 千瓦之间,是前往谷神星、木卫一、土卫六和木卫二等潜在目的地的先驱无人任务的理想选择。与传统卫星相比,FEP 系统具有可扩展性和灵活性,可承载更大的有效载荷并缩短运输时间。研究表明,人们正在积极研究它们,以用于未来的载人火星任务和外行星探索,而长期高功率需求至关重要。将这项技术集成到先进的航天器中可以帮助航天器运行更长时间。3. 航天器裂变动力的主要优势:[1] 更高的功率输出:与传统的太阳能或化学动力系统相比,裂变动力系统可提供更高的功率水平,使高能科学仪器、先进的推进系统和栖息地支持系统能够运行,用于多行星和深空载人任务。[2] 高功率任务的成本效益:对于需要功率输出超过 1 kWe 的任务,裂变系统比放射性同位素动力系统更具成本效益。这使它们成为具有大量能源需求的长期任务的理想选择。[3] 高功率需求的低质量:当功率要求超过
Cureveda LLC是一家生物制药公司,开发了刺激天然抗氧化剂途径,以治疗自身免疫性,炎症和神经退行性疾病,对新疗法的需求很大。该公司目前正在关注几种疾病适应症,包括慢性阻塞性肺部疾病(COPD)和溃疡性结肠炎。Cureveda背后的故事是根据约翰·霍普金斯大学彭博公共卫生学院的环境研究教授Shyam Biswal博士在实验室中进行的。公司联合创始人拉杰什·蒂姆穆拉帕(Rajesh Thimmulappa)是彭博公共卫生学院的教职员工成员,于2001年加入了比斯瓦尔博士的实验室,是研究宿主因素,研究宿主因素,这些宿主因素调节了炎症信号反应,并保护了免受免疫疾病的疾病,由环境毒性毒性毒性毒性毒性和病原体引起。Biswal博士的小组发现,抵消氧化应激的抗氧化防御途径决定了小鼠模型中与香烟烟雾相关的肺气肿的敏感性。他的研究进一步表明,抗氧化剂调节途径的缺陷与COPD的进展有关,氧化应激和炎症增加。Biswal博士和合作者已经竞争了概念证明的临床前研究证明,针对这种法规途径以治愈各种肺部疾病,例如COPD,哮喘和ARDS。他的实验室工作得到了美国国立卫生研究院的支持,包括美国国家医学研究所,国家心脏,肺和血液研究所以及国家癌症研究所的赠款。在2010年,Cureveda与GlaxoSmithkline(GSK)进行了合作,以开发用于治疗COPD的药物。最近,Cureveda获得了NIH的国家糖尿病和消化研究所和肾脏疾病的第一阶段小型企业技术转移(STTR)赠款,以开发其复合吠陀-1209,以治疗溃疡性结肠炎。
错过。阿努拉达·穆克吉女士Shikha Tandon 先生罗宾·格罗弗女士Anu Srivastava 女士Shreya Som 女士萨马皮拉·比斯瓦尔先生拉胡尔·乔汉女士Akriti Gandotra 女士帕拉维·拉奥女士Shreya Seth 先生被告律师:Gyanendra Kumar 女士Ragima R. 先生Sandeep Grover 先生Pankhuri Bhardwaj 先生Mohit Chadha 代表 R-1 做出判决。 SD Dubey,技术成员
Ibrahim Ahmed El-lmam,MBBS,MPH James Ahodantin,博士 Musa Ajibola,博士 Ziad Alahmadi,MBBS Mohammed Amin,博士,理学硕士,理学学士。 Alireza Amindarolzarbi,医学博士 Manjula Ananthram,医学学士 Pavlos Anastasiadis,博士 Rosemary Ansah,医学博士 Awadhesh Arya,博士 Elizabeth Balcer-Kubiczek,博士 Aditi Banerjee,博士 Chandra Bhati,理学硕士,MRCS,FACS Leena Bhoite,博士 Nrusingh Biswal,博士 Nicole Brandt,药学博士,工商管理硕士 P. Leon Brown,博士 Kevin Byrne,理学硕士 Laura Carreto-Binaghi,医学博士,博士 Rebecca Carter,医学博士 Stephanie Colbourn,理学士,医学学士,MRCGP Vincent Conroy,PT,DScPT Tamasa De,博士 Liz Dennis,博士,RD Vasken Dilsizian,医学博士
首席赞助人 Prof. Bibhuti Bhusan Biswal 尊敬的副校长,OUTR PATRON 教授。 Achyutananda Acharya 教授& 学术事务院长,OUTR 召集人 Prof. Bijnyan Ranjan Das 教授& 基础科学与人文学院院长,OUTR 联合召集人 Dr. Biswajit Samantaray,OUTR 博士Alfa Sharma,外部财务主管博士Geetanjali Pradhan,外部联合财务主管博士BC Bhatta,OUTR 地方组织委员会博士Babita Ojha,OUTR 博士Minakshi Prasad Mishra,OUTR 博士Braja Narayan Patra,UU 博士Smita Mohanty,CIPET 博士Purnendu Parhi,俄罗斯博士Anita Pati,KIIT 博士Biranchi Narayan Tosh,OUTR 博士Jyoti Prakash Dhal,OUTR 博士Priyambada Jena,OUTR 博士Ganeswar Dalei,OUTR 博士Atanu Banerjee,OUTR 博士Rajat Kumar Tripathy,OUTR 博士Subhrajit Mohanty,OUTR 博士Subhraseema Das,OUTR 博士Lopamudra Giri,OUTR 博士Amarchand Parida 博士Mahesweta Moharana,OUTR 博士Priyabrata Mukhi,OUTR 博士Rojalin Pradhan,OUTR
三月 01]。可从:https://www.inca.gov.br/estimativa 获取。 2. Datasus.gov [互联网]。巴西:Minisério da Saúde。 SUS 信息部门 - DATASUS。 Informac¸ões de Saúde (TabNet),Estatísticas Vitais 2018。[引用于 2020 年 5 月 25 日]。可从:http://www2.datasus.gov 获取。 br/DATASUS/index.php?area=02 。 3.Balagula Y、Rosen ST、Lacouture ME。支持性肿瘤学的出现:癌症治疗皮肤病不良事件的研究。 J Am Acad Dermatol。 2011;65:624---35。 4. 比斯瓦尔 SG,梅塔 RD。癌症患者化疗的皮肤不良反应:临床流行病学研究。印度皮肤病学杂志。2018;63:41---6。5. Hackbarth M、Haas N、Fotopoulou C、Lichtenegger W、Sehouli J。化疗引起的皮肤毒性:女性癌症的发生率及其对生活质量的影响。一项前瞻性研究的结果。支持护理癌症。2008;16:267---73。6. Susser WS、Whitaker-Worth DL、Grant-Kels JM。化疗的粘膜皮肤反应。美国皮肤科学院杂志。1999;40:367---400。
召集人 : 博士钦奈 Amrita 工程学院校长 V. Jayakumar 博士Alokesh Pramanik,澳大利亚科廷大学 | A.S. 博士Christine Georgantopoulou,巴林理工学院,巴林 | A.S. 博士德拉赞·科扎克 (Drazan Kozak),克罗地亚斯拉沃尼亚布罗德大学 | A.S. 博士埃尔坎·阿尔廷索伊 (Ercan Altinsoy),德国德累斯顿工业大学 | A.S. 博士卡皮尔·古普塔 (Kapil Gupta),南非约翰内斯堡大学 | A.S. 博士Manoj Gupta,新加坡国立大学 | A.S. 博士穆拉利·桑达拉姆(Murali Sundaram),辛辛那提大学 | A.S. 博士Paulo David J,葡萄牙阿韦罗大学 | A.S. 博士Saidur Rahman,马来西亚双威大学 | A.S. 博士谢尔盖·赫洛赫 (Sergej Hloch),斯洛伐克科希策技术大学 | A.S. 博士Vijai Shaknar,沃尔沃卡车,瑞典 | A.S. 博士东芬兰大学 Xiao-Zhi Gao 博士; Asokan T.,印度理工学院马德拉斯分校 | A.S. 博士Bibhuti Bhusan Biswal,NIT 梅加拉亚邦 | A.S. 博士Biranchi Panda,印度理工学院古瓦哈提分校 | A.S. 博士Golak Bihari Mahanta,NIT 巴特那 | A.S. 博士KL Vasudev,印度理工学院 Kharagpur 分校 | A.S. 博士Ramesh Kumar K.,Amrita Vishwa Vidyapeetham,哥印拜陀 | A.S. 博士Shankar Venugopal,Mahindra & Mahindra,钦奈 | A.S. 博士Shital S. Chiddarwar,VNIT Nagpur | A.S. 博士Sounak Kumar Choudhury,印度理工学院坎普尔分校 | A.S. 博士Sreekumar M.,IIITDM Kancheepuram | A.S. 博士Vivek Kumar Chouhan,福特汽车公司,印度
简介 这篇关于神经成像科学中的功能性和有效连接的综述试图反映这一领域日益增长的兴趣和发展速度。在与《脑连接》的编辑们讨论这篇文章的性质时,我得到的印象是,Biswal 博士期待对脑成像中连接的基本问题进行学术综述。另一方面,Pawela 博士想要一些更具争议性和吸引力的东西,即引发读者讨论。我向 Chris 保证,如果我坦率地写出连接研究的背景和当前问题,那么将有足够的争议让他高兴。因此,我认真致力于撰写一篇关于神经成像中连接分析的发展和实践的辩论性和自我参照性评论。这篇评论包括三个部分。第一部分简要介绍了大脑的功能整合史,特别关注功能性和有效连接之间的区别。第二部分讨论更实际的问题。它探讨了功能连接和有效连接之间的差异,并试图根据各种分析方法的特征阐明它们之间的关系。在第三部分中,我们将介绍实验和内生网络活动建模方面的最新进展。为了从主题上说明这些方法的威力,本节重点介绍处理层次结构以及前向和后向连接之间的必要区别。本节最后回顾了网络发现方面的最新进展以及
脑电图 (EEG) 是通过放大和记录人体头皮上由大脑电流产生的电活动而获得的记录 (Zandi 等人,2011;Larson 和 Taulu,2018)。EEG 是脑成像科学中广泛使用的媒介,在脑机接口 (BCI;Gao 等人,2021) 研究中发挥着重要作用。BCI 是一种将脑信号转换为有用命令的在线计算机系统。到目前为止,不同类型的脑信号已被用于开发 BCI 系统。由于其方便和低成本,EEG 信号已成为 BCI 系统中的主要媒介。然而,实践证明,由于 EEG 信号能量较弱,EEG 信号的采集很容易受到各种噪声的干扰。为了从嘈杂的 EEG 信号中提取有用信息 (Shad 等人,2020),在 EEG 信号分析中研究了各种信号处理方法。在脑信号分析中,提高信噪比是一个重要的预处理步骤。传统上,它是使用快速傅里叶变换(FFT)完成的(Wahab et al., 2021)。在BCI中,FFT也用于从EEG信号中实现显著特征的提取。短时傅里叶变换是FFT的增强,它可以生成EEG的二维频谱表示(Ha and Jeong,2019)。然而,STFT的主要缺点是其频率分辨率不可调。Huang提出了一种将STFT与卷积神经网络相结合用于生物医学信号分类的方法(Huang et al., 2019)。此外,基于傅里叶分析的数字滤波器也是EEG信号去噪的重要工具(Hsia and Kraft,1983)。它们的应用包括噪声伪影去除、特定频带的特征选择。尽管近年来新的脑电滤波技术不断涌现,但滤波技术并不是 BCI 研究的重点,相关研究也报告了数字滤波器的缺点(Alhammadi and Mahmoud,2016)。在过去的几十年中,随着计算能力的提高,许多更先进的信号处理方法被发明并投入实践。Upadhyay 提出了一种结合 S 变换和独立成分分析的新技术,用于脑电信号中的伪影消除和噪声抑制(Upadhyay et al.,2016)。Djemili 利用经验模态分解将脑电信号分解为固有模态函数,实现了正常和癫痫脑电特征的智能分类(Djemili et al.,2016)。Jiang 的研究中,提出了一种基于多词典的稀疏表示方法,用于癫痫脑电尖峰的自动检测(Jiang et al.,2020)。 Dora 应用变分模态分解来校正 EEG 测量中的伪影(Dora 和 Biswal,2020 年)。Chen 提出了一种稀疏傅里叶变换,并将其应用于电力线伪影消除(Chen et al.,2021b)。