Sebastijan Hop 1,122,Maise Al Bakir 1,122,Crispin T. Hiley 1,2,3,122,Marcin Skrzypski 1,2,3,4,122,Alexander M. Frankell 1,2 Van den Bos 5,Diana Spierings 5,Dahmane Oukrif 9,Marco Novelli 9,Turja Chakrabarti 10,Adam H. Rabinowitz 11,Laila Ait Hassou 12,SaskiaLitière13 Ariana Huebner 1,2,16,CarlosMartínez-Ruiz 2,16,James RM Black 2,16,Wei Wu Micholas 10,Nicholas Angelo,16岁,朱利安(Julian),朱利安(Julian)17岁,朱利安·奇米埃尔克(Juliann Chmielecki)7,Carl Barrett 7,Carl Barrett 7 5,Karen H. Vousten 18,Trever Bivona,19,Trac *,Robert E. Hynds 1,2,Nnennaya Kanu 2,123,Simone Zaccaria 2,20,123
Rasmus Hauch,Bjorn Preuss,Colum Donnelly,Nicola Grandis,MarionCarré,Fernando Perez,Jonni Malacarne,Ehrik Aldana,Susannah Shattuck,Evi Fuelle,Bastiaan van de Rakt,MacIej Karpicz,Maciej Karpicz,Shemmy Majewski,negar donnellrienl negan vahrich vuhrich vuhrich vuahn vuyrich vuyrich vuyrich ryyrich ryyrich Kapadia,Anargyros Sideris,Benno Staub,Gianluca Maruzzella,Fabrizio Dini,Alexis de Vienne,Thomas Charisis,Christos theocharatos,Ezequiel Paura,Pierluigi failla,Claus Lang,Maury Shenk,florian neumeier,sim nuimenin, AsoDeMattè,Davide Fanale,Nicola Caporaso,Elisa Czerski,Ramin Karbalaie,Rui Dias Ferreira,Philip Meier,Alessandro Lazzeri,Federico Cesari,Federico Hakki Ercosman、Sina Youn、Jan-Kees Buenen、Marco Maier、Bart Kappel、Mindaugas Civilka、Jenny Romano、Lorenzo Mora、Pedro Henriques、James Black、Sébastien Bratières、Shawn Curran、Hossein (Kian) Sarpanah、Amir Bozorgzadeh、Victòria Brugada-Ramentol、Bebiana Moura、Gonçalo Consiglieri、Michael Fiorentino、Karel Bourgois、Tomas Krilavičius、Darius Amilevičius、Alexander Wijninga、Sarah Gates、Daniel Quirke、André Azevedo、Fabiana Clemente、Janhvi Pradhan Deshmukh、Philip Dawson
S. Sebastian Pineda, 1,2,3,4 Hyeseung Lee, 3 Maria J. Ulloa-Navas, 5 Raleigh M. Linville, 3,4 Francisco J. Garcia, 3,6 Kyriakitsa Galani, 2,4 Erica Engelberg-Cook, 5 Monica C. Castanedes, 5 Brent E. Fitzwalter, 3 Luc J. Pregent, 5 Mahammad E. Gardashli, 5迈克尔·德鲁尔(Michael Duck),5戴安娜·V·维拉·加西亚(Diana V. Vera-Garcia),5安德烈·T.S。Hucke,5 Bjorn E. Oskarsson,7 Melissa E. Murray,5 Dennis W. Dickson,5 Myriam Heiman,3,6,9, * Veronique V. Belzil,5,8, *和Manolis Kellis *和Manolis Kellis 1,2,4,1,2,4 *马萨诸塞州马萨诸塞州剑桥市的人工智能实验室,马萨诸塞州剑桥市02139,美国3科沃学习与记忆研究所,马萨诸塞州技术研究院,剑桥,马萨诸塞州剑桥市,美国马萨诸塞州02139,美国4美国麻省理工学院和哈佛大学研究所,哈佛大学,哈佛大学,坎布里奇,坎布里奇,马萨诸塞州坎布里奇,马萨诸塞州02141,美国5号部门,脑电图,302141,美国5号部门。马萨诸塞州科技研究所,马萨诸塞州剑桥市02139,美国7神经病学系Mayo Clinic,美国杰克逊维尔32224,美国8现在的地址:Vanderbilt大学医学中心,NASHVILLE,TN 37232,USA 9 LEAD CONCECTENCE conteracnence *socustract *socorlight *socutience *,),veronique.belzil@vumc.org(v.v.b。),manoli@mit.edu(M.K。)https://doi.org/10.1016/j.cell.2024.02.031
澳大利亚劳动力市场和数字经济*杰夫·博兰德(Jeff Borland)和迈克尔·科尔利(Michael Coelli)墨尔本经济学系2022年2月摘要我们回顾了数字经济对澳大利亚劳动力市场的影响。数字经济影响劳动力市场的主要方式是分类的;并用有关机器人和零工经济的案例研究进行了说明。对澳大利亚数字经济影响的证据进行了评估,将新的经验分析与现有研究的发现相结合。考虑了三个主要的劳动力市场成果:(i)总工作量; (ii)所需的工作和技能类型; (iii)收入的劳动份额。我们以讨论政策含义和教训的讨论来结束。*为澳大利亚统计局/澳大利亚储备银行准备“澳大利亚数字经济”会议准备的论文。我们从阿布扎尔·阿里(Abuzar Ali)的出色研究帮助中受益。我们感谢Gianni La Cava和Mark Wooden的建议和数据;提供Bjorn Jarvis和Talei Parker的ABS数据的帮助;以及纳利尼·阿加瓦尔(Nalini Agarwal)和阿布扎尔·阿里(Abuzar Ali)的评论。这项研究得到了Arc Discovery Grant DP160102269的支持。本文使用来自澳大利亚家庭(HILDA)调查的家庭,收入和劳动力动态的单位记录数据。希尔达项目是由澳大利亚政府社会服务部(DSS)资助的,由墨尔本应用经济和社会研究所(墨尔本研究所)管理。本文报告的发现和观点是作者的发现,不应归因于DSS,墨尔本研究所,ABS或RBA。
实际数据显示可再生能源降低了“绿色电力成本的捆绑(华尔街日报”(Wall Street Journal Op-Ed,2025年1月1日),Bjorn Lomborg声称:“太阳能和风能省钱是环保主义者的谎言。”但是,实际数据消除了Lomborg的神话。在2024年3月,美国10个州的10个州中有六个,在2024年3月最低电价的20个州中,有12个州的可再生能源最多,占其电网电动机消费量的百分比,从2023年10月1日至2024年9月30日。具体来说,南达科他州用风(77.5%),水电(30.1%)和太阳能(2.2%)以及从化石气体和煤炭的10.2%产生了其消耗电力的110%,总计137%。它导出了超额37%。尽管仅凭风能(WWS)就产生了100%以上的消耗电力,但南达科他州的电力价格是美国最高的第9台美国电价。同样,蒙大拿州(86.5%WWS),爱荷华州(79.4%),华盛顿州(72.6%)(72.6%),堪萨斯州(70.2%)(70.2%),俄勒冈州(64.2%),新墨西哥州(59.7%)(59.7%)(59.7%),怀俄明州,怀俄明州(56.1%),北达科他州(55.1%)(55.1%)(55.1%)(55.1%)(55.1%)(59.55.19),第17届 - ,第19-,第20-,第1 st-和第7-最低的价格。仅缅因州(62.1%WWS)和加利福尼亚(47.3%WWS)在加利福尼亚的价格很高,这是因为公用事业将化石气体的高成本传递给了客户,野火来自传输线,地下线,地下线,San Bruno和Aliso Canyon Gas Disasters,Ratofting Gase,以及Ratofting Bruno的开放,并遵循San Bruno的开放,并一直持续使用。2024年更多的可再生能源和电池也提高了网格可靠性,这证明了52%的局部电力价格3月至6月2024年对2023年。总的来说,可再生能源和存储既降低电价又提高可靠性。Mark Z. Jacobson是斯坦福大学的民用和环境工程学教授,也是“无需奇迹的作者:当今的技术如何拯救我们的气候并清洁空气”。 2025年1月2日。Mark Z. Jacobson是斯坦福大学的民用和环境工程学教授,也是“无需奇迹的作者:当今的技术如何拯救我们的气候并清洁空气”。 2025年1月2日。
撰稿人:德鲁·亚当斯(Drew Adams),阿什什·阿格拉瓦尔(Ashish Agrawal),特洛伊·安东尼(Troy Anthony),维卡斯·阿罗拉(Vikas Arora),贾根·阿特拉(Jagan Athraya),戴维·奥斯丁(David Austin),托马斯·巴里(Thomas Baby),弗拉基米尔·巴里尔Chidambaran,Deba Chatterjee,Shasank Chavan,Tim Chien,Gregg Christman,Bernard Clouse,Maria Colgan,Carol Colrain,Nelson Corcoran,Michael Coulter,Jonathan Creighton,Judith Creighton,Judith D'Addmo ,比尔·哈贝克(Bill Habeck),米尔·汉克(Min-Hank Ho),李·亨(Lijie Heng),比尔·霍达克(Bill Hodak),Yong Hu,Pat Huey,Praveen Kumar Tupati Jaganath,Sanket Jain,Prakash Jashnani,Caroline Johnston,Shantanu Joshi,Shantanu Joshi Surinder Kumar, Paul Lane, Adam Lee, Allison Lee, Jaebock Lee, Sue Lee, Teck Hua Lee, Yunrui Li , Ilya Listvinski, Bryn Llewellyn, Rich Long, Barb Lundhild, Neil Macnaughton, Vineet Marwah, Susan Mavris, Bob McGuirk, Joseph Meeks, Mughees Minhas, Sheila Moore, Valarie Moore, Gopal Mulagund, Charles Murray, Kevin Neel, Sue Pelski, Raymond Pfau, Gregory Pongracz, Vivek Raja, Ashish Ray, Bert Rich, Kathy Rich, Andy Rivenes, Scott Rotondo, Vivian Schupmann, Venkat Senaptai, Shrikanth Shankar, Prashanth Shanthaveerappa, Cathy Shea, Susan Shepard, Kam Shergill, Mike Skarpelos, Sachin Sonawane, James Spiller, Suresh Sridharan, Jim Stenoish, Janet Stern, Rich Strohm, Roy Swonger, Kamal Tbeileh, Juan Tellez, Ravi Thammaiah, Lawrence To, Tomohiro Ueda, Randy Urbano, Badhri Varanasi, Nick Wagner, Steve Wertheimer, Patrick Wheeler, Doug Williams, James威廉姆斯、安德鲁·维特科夫斯基、丹尼尔·黄、余海玲
(R)................................................2nd................... 2190 25B Smith, Andy (DFL)........................................ 5th.............................. 9249 35A Stephenson, Zack (DFL)................................ 5th.............................. 5513 22B Stier, Terry (R)................................................2nd..........................7-9010† 15A Swedzinski, Chris (R).......................................2nd................................ 5374 54A Tabke, Brad (DFL)............................................. 5th..............................7-9001† 15B Torkelson, Paul (R).........................................2nd................................ 9303 16A Van Binsbergen, Scott (R) ................................2nd..........................7-9010† 38B Vang, Samantha (DFL)........................................ 5th.............................. 3709 52B Virnig, Bianca (DFL)................................................. 5th............................... 4192 7B Warwas, Cal (R) ..............................................2nd..............................7-9010† 32A West, Nolan (R)...............................................2nd................... 4226 5B Wiener, Mike (R)...............................................2nd................... 4293 57B Witte, Jeff (R)......................................................2nd................... 4240 14B Wolgamott, Dan (DFL)................................ 5th................................ 6612 67B Xiong, Jay (DFL)............................................. 5th................... 4201 46B Youakim, Cheryl (DFL).................................... 5th................... 9889 3B Zeleznikar, Natalie (R).............................................2nd................... 2676 40B 特别选举定于 1/28/25.............................................................
[1] Harald Köpping Athanasopoulos。2019 年。《月球村和太空 4.0:‘开放概念’是开展太空活动的新方式吗?》太空政策 49(2019 年),101323。[2] Edward Bachelder、David H Klyde、Noah Brickman、Sofia Apreleva 和 Bruce Cogan。2013 年。融合现实以增强飞行测试能力。在 AIAA 大气飞行力学 (AFM) 会议上。5162。[3] Leonie Becker、Tommy Nilsson、Paul Demedeiros 和 Flavie Rometsch。2023 年。增强现实服务于人类在月球上的操作:来自虚拟试验台的见解。在 2023 年 CHI 计算系统人为因素会议的扩展摘要中。1-8。 [4] Loredana Bessone、Francesco Sauro、Matthias Maurer 和 Matthias Piens。2018 年。月球及以外地区实地地质探索的测试技术和操作概念:欧空局 PANGAEA-X 活动。载于欧洲地球物理联合会大会摘要。4013 年。[5] D Budzyń、H Stevenin、Matthias Maurer、F Sauro 和 L Bessone。2018 年。欧空局为月球太空行走模拟制作月球表面地质采样工具原型。载于第 69 届国际宇航大会 (IAC),德国不来梅。[6] Andrea EM Casini、Petra Mittler、Aidan Cowley、Lukas Schlüter、Marthe Faber、Beate Fischer、Melanie von der Wiesche 和 Matthias Maurer。2020 年。欧空局的月球模拟设施开发:LUNA 项目。空间安全工程杂志 7, 4 (2020),510–518。[7] David Coan。2022 年。NEEMO 22 EVA 概述与汇报。技术报告。[8] Brian E Crucian、M Feuerecker、AP Salam、A Rybka、RP Stowe、M Morrels、SK Mehta、H Quiriarte、Roel Quintens、U Thieme 等人。2011 年。ESA-NASA“CHOICE”研究:在南极内陆康科迪亚站过冬,作为太空飞行相关免疫失调的类似物。在第 18 届 IAA 人类进入太空研讨会上。[9] Enrico De Martino、David A Green、Daniel Ciampi de Andrade、Tobias Weber 和 Nolan Herssens。 2023. 模拟低重力环境下的人体运动——弥合太空研究与地面康复之间的差距。神经病学前沿 14 (2023),1062349。[10] Gil Denis、Didier Alary、Xavier Pasco、Nathalie Pisot、Delphine Texier 和 Sandrine Toulza。2020. 从新太空到大太空:商业太空梦想如何变成现实。宇航学报 166 (2020),431–443。[11] Dean B Eppler。1991. 月球表面作业的照明限制。 NASA STI/Recon 技术报告 N 91(1991),23014。[12] Barbara Imhof、Waltraut Hoheneder、Stephen Ransom、René Waclavicek、Bob Davenport、Peter Weiss、Bernard Gardette、Virginie Taillebot、Thibaud Gobert、Diego Urbina 等人。2015 年。月球行走与人机协作任务场景与模拟。在 AIAA SPACE 2015 会议和博览会上。4531。[13] Curtis Iwata、Samantha Infeld、Jennifer M Bracken、Melissa McGuire、Christina McQuirck、Aron Kisdi、Jonathan Murphy、Bjorn Cole 和 Pezhman Zarifian。2015 年。并行工程中心基于模型的系统工程。在 AIAA SPACE 2015 会议和博览会上。4437。[14] Juniper C Jairala、Robert Durkin、Ralph J Marak、Stepahnie A Sipila、Zane A Ney、Scott E Parazynski 和 Arthur H Thomason。2012 年。在 NASA 中性浮力实验室进行 EVA 开发和验证测试。第 42 届国际环境系统会议 (ICES)。[15] Hyeong Yeop Kang、Geonsun Lee、Dae Seok Kang、Ohung Kwon、Jun Yeup Cho、Ho-Jung Choi 和 Jung Hyun Han。2019 年。跳得更远:在失重沉浸式虚拟环境中向前跳跃。2019 年 IEEE 虚拟现实与 3D 用户界面 (VR) 会议。699–707。https://doi.org/10.1109/VR.2019.8798251 [16] Lin-gun Liu。 2022. 火星和月球上的水。陆地、大气和海洋科学 33, 1 (2022), 3。[17] Erin Mahoney。2022. 美国宇航局将在亚利桑那州沙漠进行阿尔特弥斯月球漫步练习。https://www.nasa.gov/feature/nasa-to-practice-artemis- moonwalking-roving-operations-in-arizona-desert
了解加速温度曲线对无铅焊接的影响 John L. Evans、Julius Martin 和 Charles Mitchell 奥本大学 阿拉巴马州奥本大学 Bjorn Dahle KIC 热分析 加利福尼亚州圣地亚哥 摘要 由于焊膏供应商定义的峰值温度较高且助焊剂活化时间较长,因此无铅焊接的传统回流曲线通常需要更长的处理时间。当在单个电路设计中集成多种封装类型时,这些曲线变得尤为具有挑战性。在处理具有高热质量的产品设计(例如散热片和金属基板)时,难度会更大。这些设计会在整个电路组件中产生大的热梯度,并进一步增加了寻找“最佳”曲线窗口的复杂性。所有这些问题都导致无铅焊接的回流处理时间显著增加。本文探讨了无铅电子产品大批量生产所需的这些增加的处理时间。并介绍了典型工艺能力和实际生产能力的研究。该研究评估了从小型电路组件(例如手机)到大型电路组件(例如汽车和计算机)的大批量电子产品制造,并研究了一系列“最佳”回流曲线,以加速标准无铅工艺窗口,从而使用自动曲线系统实现目标制造能力。然后,使用这个定义的工艺窗口制造测试载体,并测试其质量(焊料空洞和外观)和焊点可靠性(加速寿命测试)。设计的测试载体包括来自大型物理分布的组件,包括:小型和大型 BGA、QFN 和任何类型的分立元件。在组装过程中,使用虚拟曲线记录工艺曲线窗口的任何偏差。本出版物中提供了质量和可靠性数据,并包括故障分析以确定此建议曲线的能力。采用此曲线策略后,许多制造商可以减少回流无铅电路组件的处理时间,而不会显著降低制造质量或可靠性。此外,本研究为在无铅焊接应用中使用加速曲线速度提供了合理的理解和限制。背景 无铅焊接正在快速发展,与无铅加工相关的制造问题给许多制造商带来了困难。这些困难在过去五年中已得到大量记录,包括基板和元件电镀变化、焊料润湿性和焊点特性的差异以及焊点可靠性变化。5 其中一个更重要的变化是焊接工艺温度的提高,以及这些高温对电子产品质量和加工时间的影响。特别是,焊料(例如 SnAgCu)回流温度的提高,使印刷电路板(具有正常的玻璃化转变温度,T g 为 140 O C-160 OC)暴露在超过 250 O C 的温度下,从而增加了电路板的翘曲。这种变化可能会给产品带来质量问题,尤其是如果进行双面组装加工的话。8,4 回流温度提高的另一个影响是需要延长时间以适应更高的回流温度,同时保持推荐的温度暴露。为了将峰值回流温度从标准共晶 SnPb 焊料的 220 OC - 230 OC 范围提高到 SnAgCu 的 250 OC - 260 OC 范围,推荐的回流曲线时间将显著增加。加工时间的增加将要求制造商降低回流炉的皮带速度或在制造过程中增加炉容量。对于大批量制造商来说,这两种选择都代价高昂。7,9 本研究调查了处理无铅焊接增加的回流温度的替代方法,同时将对许多大批量制造商的财务影响降至最低。本研究重点关注不使用“最佳”回流曲线和保持相同处理窗口对大批量产品的影响。(仅考虑大批量组件,因为降低炉带速度以满足推荐的处理窗口不会对小批量制造商产生重大影响)。本调查重点关注不使用“最佳”回流曲线和保持相同加工窗口对大批量产品的影响。(仅考虑大批量组件,因为降低炉带速度以满足推荐的加工窗口不会对小批量制造商产生重大影响)。本调查重点关注不使用“最佳”回流曲线和保持相同加工窗口对大批量产品的影响。(仅考虑大批量组件,因为降低炉带速度以满足推荐的加工窗口不会对小批量制造商产生重大影响)。