量子力学(QM)与其他物理理论不同,因为其优雅而强大的数学形式主义掩盖了缺乏独特,完整和一致的概念框架,以适应应与数学对象相应的物理元素。过多的数学化,物理学模糊以及放弃其余物理学所依赖的原则(例如现实主义,确定性,位置,客观性或描述性)在我们所知的QM遗产中一直是不适的签名。从不同的角度看,该研究主题的目的是促进对QM物理学的讨论。作者被邀请仔细观察正式的设备,并迈向更现实和现实主义QM的新途径。本期所包含的15篇文章代表了不同的努力来识别基本的物理定律和因果关系,提出了可能的“ subquantum”理论描述,修改理论与观察之间的对应规则,或提供逻辑论点。具体模型,质疑不可能的定理。Gerard'T Hooft(Hooft)的介绍性陈述在本期中的许多文章中携带了火炬:“没有浪费时间和精力,对哲学上的正当施加和含义,我们写下了量子系统的量子条件,以使其数学上等于确定性系统。答案当然是,他们将自己的起源追溯到海森伯格,博尔和爱因斯坦的著作。”'T Hooft的文章的自然流量和简单性是伟大的硕士签名,这提出了一个问题,为什么我们在过去考虑过所有这些哲学上的理由。还有关于贝尔型不平等的大量文献,声称超出了哲学。贝尔的定理通过对原子和亚原子实体的实验的极端解释来规避。一个极端是超亮体“影响”(不是信息传递)的推断,另一个极端是超确定主义,如霍森费尔德(Hossenfelder)和帕尔默(Palmer)(Hossenfelder and Palmer)的文章中更可口的形式所讨论的。贝尔的定理在寻找我们世界的当地现实主义者和确定性描述时,代表了一个重大的绊脚石。然而,对这个问题的几项贡献表明,它并不构成被认为是的无法动的障碍,因为它不仅很难与任何实际的实验相关,而且还包含可疑的物理假设。oaknin(oaknin)表明,贝尔型不平等的推导遭受与贝尔变量的测量有关的深层物理问题,这需要绝对的
学术头衔和职位 - 1985 年:都灵大学物理学荣誉学位(110/110 优异成绩) - 1985 – 1986 年:高中数学和物理教师 - 1987 – 1988 年:尼尔斯玻尔研究所 INFN 研究员(哥本哈根,丹麦) - 1988 – 1990 年:INFN、Sez 研究员。都灵大学 - 1990 – 1991 年:美国马萨诸塞州沃尔瑟姆布兰迪斯大学物理系高级 NATO-CNR 研究员 - 1991 – 1992 年:法国里昂高等师范学院理论物理实验室研究助理 - 1992 – 1994 年:高中物理教师 - 1994 – 2006 年:都灵大学理论物理系研究员 - 1994 年至今:都灵分院 INFN 研究助理 - 2006 年至今:都灵大学物理系理论物理副教授 学术服务 - 多名本科生和研究生的导师,许多博士学位期末考试委员会成员 - 许多博士后和永久职位选拔委员会成员 - Levi-Montalcini 和 FIRB 项目的裁判学校和会议 - “RTN 弦、超引力和规范理论冬季学校” 组委会成员(都灵,2003 年 1 月 7-11 日) - “TMR 规范理论、超对称和量子引力的量子方面冬季学校” 组委会成员(都灵,2000 年 1 月 26 日 - 2 月 2 日) - “从对偶模型到弦和膜” 研讨会组委会成员(都灵,2011 年 10 月 28-29 日) - “理论物理学的新前沿,科尔托纳 2018” 研讨会组委会主席,科尔托纳,2018 年 5 月 23-26 日 - “伽利略伽利莱研究所” 组织的在线会议“Cortona Young” 组委会成员(2020 年 5 月 27-29 日) 资助 -研究项目 MAST“弦理论的现代应用”,都灵大学“卓越科学”项目,由圣保罗公司资助(268,000 欧元)2013-2016 - FP7-PEOPLE-2009-IEF 项目 n 的主要协调员。 253534 CMADS “凝聚态 AdS/CFT 对应的应用” 2009-2011 - MIUR-PRIN 合同的本地协调员 2015MP2CX4 “规范理论和弦的非微扰方面” - MIUR-PRIN 合同的成员 2009KHZKRX-007 “宇宙的对称性和基本相互作用” - MIUR-PRIN 合同 2005023102,“弦、D 膜和规范理论”的成员 - MIUR-PRIN 合同 2003023852 项目“基本相互作用的物理学:规范理论、引力和弦”的成员 - MIUR-PRIN 合同 2001-1025492 项目“场论、超弦和超引力”的成员 - COST EU 项目的成员MP 1210 “弦理论宇宙”(工作组
量子物理学的反直觉方面在该理论的早期由著名的思想实验得到了说明,从爱因斯坦和玻尔的光子盒到薛定谔的猫。这些实验的现代版本涉及单个粒子 - 电子、原子或光子 - 如今已经在世界各地的许多实验室中实现。通过在受控环境中操纵这些简单系统,物理学家直接揭示了量子的奇特特性。状态叠加、纠缠和互补性定义了一种可用于信息处理的新型量子逻辑,为应用带来了巨大希望。本书描述了一类已经成熟的思想实验。在广泛且快速发展的研究领域中,我们选择详细分析在高 Q 腔中使用原子和光子进行的实验以及相关实验,涉及陷阱中的离子或光学晶格中的冷原子。在这些看似不同的领域中,相同的基本物理原理在起作用:两级自旋系统与量子谐振子相互作用。我们认为,与抽象的理想化实验相比,对这些真实的“自旋-弹簧”实验的描述更能具体地说明量子概念。尽管后者更易于分析,而且肯定会出现在量子力学的入门课程中,但我们认为,真正的“思想实验”应该成为中级或高级现代量子物理教学的核心。在实验室中进行这些实验的努力很大程度上是受到人们对量子信息在通信和计算中的实际应用的希望所引发的。相反,这个快速扩展的研究领域必将对量子概念的教学和学习产生越来越大的影响。处理真实系统必然涉及描述这些系统与其不可避免的环境之间的相互作用,换句话说,就是讨论松弛和退相干。这些现象由一种形式主义(密度算子或随机蒙特卡罗方法)描述,它取代了基本量子物理学的简单状态描述。掌握这种方法并理解退相干可以深入了解量子的一个重要方面,即它与经典物理学的关系。在量子时代的黎明,人们发明了思想实验来说明量子-经典边界的令人费解的特征。因此,理解这些实验的现代版本也必须解决这个重要问题,这并不奇怪。从描述基本量子实验的简单目标开始
这是推导贝尔不等式所需的唯一假设。λ 表示系统状态,可用任何可能的未来物理理论描述(但假设 x 和 y 与 λ 无关)。从这个意义上说,贝尔不等式远远超出了量子理论:违反贝尔不等式证明没有未来理论能够满足局域性条件 (1)。约翰·克劳泽、阿布纳·希莫尼、迈克尔·霍恩和理查德·霍尔特是 20 世纪 60 年代少数理解这一点的人,他们都想检验贝尔不等式,克劳泽想证明量子理论是错误的,而哈佛大学的年轻学生霍尔特想证明贝尔局域性假设 (1) 是错误的。得益于伯克利现有的设备,克劳泽处于有利地位。事实上,卡尔·科克尔也在 1967 年做过类似的实验,不过是出于其他目的。不幸的是,Kocher,甚至更早的吴建雄,只测量了偏振器平行或正交时的关系,而真正违反贝尔不等式需要中间取向。请注意,假设偏振是一个二维量子系统,即今天所说的量子比特,则可以从假设无信号传输的平行和正交关系中推导出 45° 关系 [1]:E 45 = (E +E )/√ – 2。这在当时并不为人所知。但无论如何,Kocher 和吴测得的可见度低于 50%,而真正违反贝尔不等式需要可见度大于 71%。因此,竞赛开始了。Clauser 先到了一步,证实了量子预测,这出乎他的意料。但随后 Holt 也得到了自己的结果,证实了不等式,这出乎他的意料。不知何故,比分竟然是一比一。当时,这些迷人而有趣的结果几乎没有引起任何人的兴趣,除了一些嬉皮士,他们后来可以声称拯救了物理学[2]。克劳塞与他们进行了长时间的讨论,尽管我最后一次见到他时,他已经变成了一个大声的气候怀疑论者。20世纪70年代,我的朋友阿兰·阿斯派克特在非洲做法国公务员,像我们所有人一样阅读物理学。当他偶然发现贝尔不等式时,他一见钟情:“我想研究它”。回到巴黎后,他前往日内瓦会见约翰·贝尔,并告诉他自己的计划。贝尔回答说:“你有永久职位吗?”事实上,在那个时代,研究贝尔不等式——甚至只是表现出对它的兴趣——都是一种科学自杀。教条认为,玻尔已经解决了所有问题。回想起来,很难理解玻尔被贬低得有多深
太初有光。光是美好的。此后不久,人们开始寻求对光的全面理解。虽然出版记录一开始有些零散,但公元前五世纪,希腊哲学家恩培多克勒得出结论,光由从眼睛发出的光线组成。欧几里得在其关于光传播的经典著作《光学》中,使用今天可能被称为局部现实主义的论证对这一观点提出了质疑。欧几里得假设光线是由外部光源发出的。但直到公元 1000 年伊本·海赛姆 (Ibn al-Haytham) 提出这一观点后,这一观点才被确立为科学依据。17 世纪的笛卡尔将光本身的特性描述为“压力”,它通过空间从光源传输到眼睛(探测器)。这个想法后来由惠更斯和胡克发展成为光的波动理论。大约在同一时间,伽森狄提出了相反的观点,即光是一种粒子,牛顿接受了这一观点并进一步发展了这一观点。杨氏 1803 年的双缝实验和菲涅尔的衍射实验普遍认为,光作为粒子和波的不同视角已经得到解决,有利于波动图像。在 19 世纪 60 年代,麦克斯韦方程以一种优雅而令人满意的方式进一步证实了这一结论:预测以光速传播的偏振电磁波。1897 年,J.J. Thomson 发现离散粒子携带负电荷在真空中移动,电磁学的波与流体观由此出现问题。随后在 1900 年,普朗克在“绝望之举”中援引了量化的电磁能量束来推导黑体辐射定律 [2, 3],这一步不仅包含了玻尔兹曼在统计力学中的先前猜想,而且与传统理解背道而驰。它最初被认为是推导的产物,后来得到纠正,但爱因斯坦在 1905 年对光电效应的描述 [4] 中更加认真地对待光量子理论。随后在 1913 年,玻尔援引了能量和角动量的量化来解释在氢-巴尔末系列中观察到的离散光谱发射线。1924 年,德布罗意基于这些想法假设不仅光,而且物质粒子也具有波状特性,这一假设彻底失败了。随后出现了量子光,这真是太棒了。随后,海森堡、玻恩、薛定谔、泡利和狄拉克等一系列发现和进步建立了量子力学的框架。就本书而言,1927 年,狄拉克将电磁场量化,有效地发展了光理论,涵盖了引发整个革命的物理现象。20 世纪 30 年代,首次在单光子水平上直接探测到光。20 世纪 50 年代原子级联光子对源 [5] 的出现及其在 20 世纪 70 年代和 80 年代的使用 [6–9] 使第一个单光子源问世。
1量子计算与通信技术中心,电气工程和电信学院,新南威尔士州悉尼,新南威尔士州2052,澳大利亚2 Physikalisch-Technische Bundesanstalt,38116,Braunschweig,德国Braunschweig,德国Technologies,Windsor House,Windsor Road,Harrogate HG1 HG1 2PW,英国5物理学院,悉尼大学,悉尼,悉尼,新南威尔士州,2006年,澳大利亚6 Microsoft Corporation,Q悉尼站,悉尼,悉尼,悉尼,新南威尔士大学,2006年,新南威尔士大学,2006年,澳大利亚澳大利亚7号,DTU FOTONIK,DTU FOTONIK,DENMASK,DENMASK,DENMBRED,DENMASK,DENMASK,DENMASK,DENMASK,DENMASK,DENMASK,DENSKRED 33 34。
1 量子计算和通信技术中心,电气工程和电信学院,新南威尔士大学,悉尼,新南威尔士州 2052,澳大利亚 2 德国联邦物理技术研究院,38116,不伦瑞克,德国 3 Quantum Motion Technologies,Nexus,Discovery Way,利兹,LS2 3AA,英国 4 现地址:Quantum Motion Technologies,Windsor House,Cornwall Road,哈罗盖特 HG1 2PW,英国 5 悉尼大学物理学院,悉尼,新南威尔士州 2006,澳大利亚 6 微软公司,悉尼大学 Q 站,悉尼,新南威尔士州 2006,澳大利亚 7 丹麦技术大学 DTU Fotonik 光子工程系,343 号楼,DK-2800 公斤。丹麦灵比 8 柏林洪堡大学物理系,12489,柏林,德国 9 费迪南德-布劳恩研究所,莱布尼茨高频率技术研究所,12489 柏林,德国 10 苏黎世联邦理工学院物理系,CH-8093,苏黎世,瑞士 11 苏黎世大学尼尔斯玻尔研究所哥本哈根,2100,哥本哈根,丹麦 12 JARA-FIT 量子信息研究所,亚琛工业大学和于利希研究中心,52074,亚琛,德国 13 新南威尔士大学电气工程与电信学院 悉尼,新南威尔士州 2052,澳大利亚 14 墨尔本大学物理学院,澳大利亚墨尔本 15 英国大学电气与计算机工程系哥伦比亚, 不列颠哥伦比亚省温哥华 V6T 1Z4,加拿大 16 大阪大学科学与工业研究中心,茨城,大阪 567-0047,日本 17 大阪大学开放与跨学科研究计划研究所量子信息与量子生物学中心,大阪 560-8531,日本 18 大阪大学工程科学研究生院自旋电子学研究网络中心 (CSRN),大阪 560-8531,日本 19 于韦斯屈莱大学物理学系和纳米科学中心,FI-40014 于韦斯屈莱大学,芬兰 20 纳米光子学中心,AMOLF,1098 XG,阿姆斯特丹,荷兰 21 雪城大学物理学系,雪城,纽约州 13244-1130,美国 22 现地址:美国空军研究实验室,罗马,纽约州 13441,美国 23 量子计算研究所,滑铁卢大学,加拿大安大略省滑铁卢 N2L 3G1 24 金乌国立科技大学材料科学与工程学院和能源工程融合系,韩国龟尾 39177 25 新南威尔士大学物理学院,澳大利亚悉尼 2052 26 澳大利亚研究委员会未来低能耗电子技术卓越中心,新南威尔士大学新南威尔士分校,澳大利亚悉尼 2052 27 代尔夫特理工大学 QuTech 和 Kavli 纳米科学研究所,荷兰代尔夫特 2600 GA
特邀报告 2021 年 6 月 应用生物技术研讨会 英国弗朗西斯·克里克研究所 2020 年 10 月 神经计算研讨会 英国伦敦大学学院 [远程] 2020 年 8 月 Q-FARM 研讨会 美国斯坦福大学 [远程] 2020 年 8 月 神经技术研讨会 美国哥伦比亚大学 [远程] 2020 年 7 月 神经技术和生物物理学研讨会 美国洛克菲勒大学 [远程] 2020 年 7 月 IEEE 光子学分会网络研讨会 加拿大渥太华 [远程] 2020 年 6 月 量子 2 光子学 美国罗彻斯特理工学院 [远程] 2020 年 5 月 北尼亚加拉瀑布光子学,美国 [远程] 2020 年 3 月 ECE 研讨会 美国波士顿大学 2020 年 3 月 ECE 研讨会 美国马里兰大学 2020 年 2 月 EECS 研讨会 美国伯克利02/2020 电子工程与物理研讨会 美国哥伦比亚大学 02/2020 电子与计算机工程研讨会 美国宾夕法尼亚大学 12/2019 复杂光子系统研讨会 荷兰特温特大学 10/2019 机器学习中的量子技术 韩国科学技术研究院 09/2019 SPIE 安全与防御 法国斯特拉斯堡 08/2019 神经技术和生物物理学研讨会 美国洛克菲勒大学 05/2019 应用物理研讨会 美国斯坦福大学 04/2019 ITAMP 研讨会 美国哈佛大学 01/2019 量子光子学 美国罗彻斯特理工学院 11/2018 麻省理工学院超冷原子中心系列研讨会 美国哈佛大学 11/2018 中国科学技术大学量子研讨会 中国上海 11/2018 2018 年国际光学与光子学青年科学家论坛 中国武汉 11/2018纳米光子学和集成光子学 中国南京 07/2018 模拟实验研讨会 英国布里斯托大学 07/2018 量子光学研讨会 英国帝国理工学院 06/2018 尼尔斯·玻尔研究所量子光学研讨会 丹麦哥本哈根大学 06/2018 DTU Fotonik 研讨会 丹麦技术大学 03/2018 布里斯托量子信息技术 英国布里斯托大学 09/2017 PICQUE 集成量子光子学 意大利罗马第一大学 06/2017 iQuISE 研讨会 美国麻省理工学院 10/2016 量子创新者 量子计算研究所 08/2016 半量子计算研讨会 加拿大量子计算研究所 11/2015 光学和量子电子学研讨会 美国麻省理工学院 11/2015 量子计算处理研讨会代尔夫特理工大学,荷兰 2015 年 3 月 美因茨大学研讨会,德国美因茨大学 2015 年 3 月 波恩大学物理研讨会,德国波恩大学 2015 年 11 月 量子模拟与量子行走 2014 年 夸祖鲁大学,南非
时间倒转对称性的kagome超导性作者:汉宾·邓(Hanbin Deng)1 *,朱wei liu 1 *,Z。Guguchia2 *,Tianyu Yang 1 *,Jinjin liu 3,4 * Frédéric Bourdarot 9 , Xiao-Yu Yan 1 , Hailang Qin 7 , C. Mielke III 2 , R. Khasanov 2 , H. Luetkens 2 , Xianxin Wu 10 , Guoqing Chang 6 , Jianpeng Liu 11 , Morten Holm Christensen 12 , Andreas Kreisel 12 , Brian Møller Andersen 12 , Wen Huang 13 , Yue Zhao 1 ,Philippe Bourges 8,Yugui Yao 3,4,Pengcheng Dai 5,Jia-Xin Yin 1,7†隶属关系:1 Southern科学技术大学物理系,中国广东,深圳。2个宇宙旋转光谱实验室,保罗·施雷尔学院(CH-5232),瑞士维利根PSI。3量子物理中心,高级光电量子体系结构和测量(MOE)的主要实验室(MOE),北京理工学院,中国北京理工学院物理学院。4北京纳米植物和超细光电系统的北京关键实验室,中国北京理工学院。5美国休斯敦莱斯大学物理与天文学系77005,美国。6物理学和应用物理学,新加坡Nanyang Technological University的物理和数学科学学院,新加坡637371。7广东港量子科学中心大湾大湾地区(广东),中国深圳。8帕里斯 - 萨克莱大学,CNRS-CEA,LaboratoireLéonBrillouin,91191,法国Gif Sur Yvette,法国。9UniversitéGrenoble Alpes,CEA,INAC,MEM MDN,F-38000 Grenoble,法国。*这些作者为这项工作做出了同样的贡献。10理论物理学的CAS关键实验室,理论物理研究所,中国科学院,中国北京。11上海大学物理科学技术学院,上海2011年,中国。12尼尔斯·博尔研究所,哥本哈根大学,丹麦哥本哈根DK-2200。13深圳量子科学与工程研究所,南方科学技术大学,深圳518055,中国广东。 †相应的作者。 电子邮件:zhiweiwang@bit.edu.cn; yinjx@sustech.edu.cn超导性和磁性是拮抗量子物质,而在沮丧的局限性系统中,它们长期以来一直在考虑它们的交织。 在这项工作中,我们利用扫描隧道显微镜和MUON旋转共振来发现Kagome Metal CS(V,TA)3 SB 5中的时间反转对称性超导性,在其中Cooper配对表现出磁性磁性,并由其调节。 在磁道通道中,我们观察到完全差距超导状态下的自发内部磁性。 在反磁场的扰动下,我们检测到Bogoliubov Quasi粒子在圆形载体上的时间反转不对称干扰。 在该矢量中,配对差距自发调节,这与在点矢量处发生的成对密度波不同,并且与时间反向对称性破坏的理论提议一致。 内部磁性,Bogoliubov准颗粒和配对调制之间的相关性为时间反向对称性的Kagome超导性提供了一系列实验线索。13深圳量子科学与工程研究所,南方科学技术大学,深圳518055,中国广东。†相应的作者。电子邮件:zhiweiwang@bit.edu.cn; yinjx@sustech.edu.cn超导性和磁性是拮抗量子物质,而在沮丧的局限性系统中,它们长期以来一直在考虑它们的交织。 在这项工作中,我们利用扫描隧道显微镜和MUON旋转共振来发现Kagome Metal CS(V,TA)3 SB 5中的时间反转对称性超导性,在其中Cooper配对表现出磁性磁性,并由其调节。 在磁道通道中,我们观察到完全差距超导状态下的自发内部磁性。 在反磁场的扰动下,我们检测到Bogoliubov Quasi粒子在圆形载体上的时间反转不对称干扰。 在该矢量中,配对差距自发调节,这与在点矢量处发生的成对密度波不同,并且与时间反向对称性破坏的理论提议一致。 内部磁性,Bogoliubov准颗粒和配对调制之间的相关性为时间反向对称性的Kagome超导性提供了一系列实验线索。电子邮件:zhiweiwang@bit.edu.cn; yinjx@sustech.edu.cn超导性和磁性是拮抗量子物质,而在沮丧的局限性系统中,它们长期以来一直在考虑它们的交织。在这项工作中,我们利用扫描隧道显微镜和MUON旋转共振来发现Kagome Metal CS(V,TA)3 SB 5中的时间反转对称性超导性,在其中Cooper配对表现出磁性磁性,并由其调节。在磁道通道中,我们观察到完全差距超导状态下的自发内部磁性。在反磁场的扰动下,我们检测到Bogoliubov Quasi粒子在圆形载体上的时间反转不对称干扰。在该矢量中,配对差距自发调节,这与在点矢量处发生的成对密度波不同,并且与时间反向对称性破坏的理论提议一致。内部磁性,Bogoliubov准颗粒和配对调制之间的相关性为时间反向对称性的Kagome超导性提供了一系列实验线索。
Epoka 大学 • Orbeli 生理学研究所 • 埃里温物理研究所 • AIT 奥地利理工学院有限公司 • ams AG • Argelas - 奥地利激光协会 • 奥地利科学院,IQOQI • 奥地利理工学院 • 克恩顿州应用技术大学 • 克恩顿州技术研究股份公司 • Crystalline Mirror Solutions GmbH • CTR 克恩顿州技术研究股份公司 • FEMTOLASERS Produktions GmbH • FFG 奥地利研究促进机构 • FH 福拉尔贝格州 - 应用技术大学 • 量子光学和量子信息研究所 • 莱奥本大学物理研究所 • 表面技术和光子学研究所,Joanneum Research Forschungsges。 mbH • IQOQI • isiQiri 接口技术有限公司 • JK 林茨大学 • Joanneum Research / NMP • kdg OPTICOMP • Kompetenzzentrum Licht GmbH • Leexedis Lighting GmbH • Luger Research eU • LUMITECH 奥地利 • Planlicht • QUBITON Laboratories KG • RECENDT – 无损检测研究中心有限公司 • 奥地利科学院 Stefan Meyer 研究所 • 施华洛世奇能源 •维也纳工业大学,光子学研究所 • 维也纳工业大学 • UAR GmbH • 因斯布鲁克大学 • 格拉茨大学 • 因斯布鲁克大学 • 维也纳大学 • 维也纳科技大学原子研究所,VCQ • 奥托贝尔照明 • ACQI sprl • ADB 机场解决方案 • AGC Glass Europe • 液化空气集团 • AMOS SA • Antwerp Space nv。 • ATA-VISION • Barco • Belgacom • 布鲁塞尔光子学团队 • Caeleste • 鲁汶天主教大学 • CELMA • 列日空间中心 • CLUSTER PHOTONIQUE • CNRS • COLASSE SA • CommScope • 赛普拉斯半导体公司 • 戴姆勒克莱斯勒 • DLR • 道康宁 • ELAS NV • ETAP nv • 欧盟军事参谋部 • EUCAR • 欧洲委员会 • 欧洲议会 • EuroTex • Flip Bamelis Engineering • 根特大学 • 根特大学 • 滨松光子学 • 亥姆霍兹联合会 • 高等光学技术研究所 • ICOS VISION SYSTEMS NV • II-VI Belgium NV • Imago 集团(前身为 AIMS Optronics) • imec • IWT • KULeuven • 鲁汶天主教大学 • KoWi • 鲁汶天主教大学 • LASEA • Light & • Multitel • MULTITEL • netec • Nikon Metrology Europe NV • Pirelli C. SpA • PNO Consultants • Robert Bosch GmbH • ROVI-TECH SA • Schréder • SEII asbl • SIRRIS • SOLVAY • 德州仪器 • TI • TMC • TP Vision • UGent / IMEC • 鲁汶天主教大学 • 列日大学 • 布鲁塞尔自由大学 (ULB) • 根特大学 • 鲁汶大学 • 布鲁塞尔大学列日• 蒙斯大学• 法雷奥视觉比利时• VDMA• 维托• 布鲁塞尔自由大学• VUB B-PHOT• VUB 应用物理和光子学系• XenICs• BH 电信• 保加利亚科学院• 电子研究所-BAS• Rompetrol• 图形艺术学院• 克罗地亚萨格勒布物理研究所• 罗德博斯科维奇研究所• 塞浦路斯理工大学• SAFE智能适应性表面有限公司 • 大学塞浦路斯 • 布尔诺理工大学 • CESNET zspo • CTU 布拉格,FEL • 布拉格捷克技术大学 • 布拉格化学技术研究所玻璃和陶瓷系 • HiLASE • 光子学和电子学研究所 • 南波西米亚大学物理生物研究所 • 科学院物理研究所 • Meopta-optika as • Nanomedic,as • 奥洛穆茨帕拉茨基大学 • 西波西米亚大学 - NTC • 皮尔森西波西米亚大学 - 新技术研究中心 • 奥尔堡大学 • 奥胡斯大学 • 基础与应用研究,大学 • Crystal Fibre A/S • DELTA Light & Optics Div. • DTU Fotonik • Ibsen Photonics • InvestroNet-Gate2growth • IPU • MaxInno • 哥本哈根大学尼尔斯玻尔研究所 • NKT Photonics • OFS Fitel Denmark Aps • 光学滤波器 • Risø 国家实验室,OPL-128 • RUNETECH • 安全和保护 • TTO A/S • 哥本哈根大学尼尔斯玻尔研究所 • 南丹麦大学 • RFMD (UK) Ltd. • 曼彻斯特大学 • EUPROCOM Ltd • Interspectrum OU • Laser Diagnostic Instruments AS • LDI Innovation UÖ • 阿尔托大学 • Ajat Oy Ltd • Arctic Photonics • BioMediTech • 拉彭兰塔理工大学 • Liekki Corporation • Liekki Oy • Lumichip Oy • 芬兰毫米波实验室 MilliLab • MODULIGHT Inc. • 坦佩雷理工大学光电子研究中心 • Optogear Oy • Pixpolar • 坦佩雷理工大学 • UEF • 东芬兰大学 • 约恩苏大学 • 于韦斯屈莱大学 • 奥卢大学 • VTT • 3M France • 3Sphotonics / Laboratoire IMS • ACAL BFI France • adixen Vacuum Products • AGENCE REGIONALE DE L'INNOVATION ALSACE • 艾克斯马赛大学 • 阿尔卡特 • Alpao • ALPhA – Route des Lasers Cluster 负责人 • ALPhANOV • Amplitude Systèmes • ARJOWIGGINS • 欧洲协会 • BBright • 生物梅里埃 • 波尔多大学 • Bureau d'études parrein • 法国商业中心 • CAILabs SAS • CCInt • CEA • CEDRAT TECHNOLOGIES • CELIA – UMR 5107 CNRS、CEA、波尔多大学 • 国家科学研究中心 • 中心造纸技术 • CILAS • CILAS • CIMTECH • CLUB LASER ET PROCEDES • 法国光子学联合会 法国光子学联盟 • 国家光学与光子委员会 • 竞争力集群 OPTITEC • 康宁 CETC • Cristal Laser • DGCIS • DIAFIR • DOW Chemical • Draka Comteq • e2v • 马赛中央学院 • 里昂高等师范学院 • 综合理工学院 • EGIDE • Emc3 • ENIB • ENS Cachan • Enssat • EPIC – 欧洲光子产业联盟 • esiee paris • ESSILOR • ESYCOM-ESIEE • 欧洲光子产业联盟 • EURO-PROCESS • EUROSHAKTIWARE • EVOSENS • EXELSIUS • FEMTO-ST/CNRS • FLIR ATS • 重点发展联盟 (FSDA) Ltd.• Fogale Nanotech • 法国电信 • 法国原子能委员会 (CEA) • 法德圣路易斯研究所 • GLOphotonics SAS • 格勒诺布尔-伊泽尔 - AEPI • HOLO3 • HOLOTETRIX • horiba jobin yvon • HP • ICB UMR CNRS 5209 • IDIL 光纤 • IES - 蒙彼利埃大学 CNRS • IFREMER • IFTH • III-V 实验室 • IM2NP - 保罗塞尚大学艾克斯 - 马赛 • Imagine Optic • IMEP LAHC • Infiniscale • INRIA • 斯特拉斯堡 INSA • INSA LYON • 菲涅尔研究所 • 光学研究所 / CNRS • 焊接研究所 • 菲涅尔研究所 CNRS • MAUPERTUIS 研究所 • 梅里厄研究所 • 矿业电信研究所 • 雷恩第一大学化学科学研究所 - CNRS • IREIS • IREPA LASER • IREPA LASER / Rhenaphotonics Alsace 集群 • ISORG • IVEA • iXCore • JCP CONSULT FRANCE • KLOE – OPTITEC • Kastler Brossel 实验室、CNRS、ENS、UPMC • LP3 实验室 UMR 6182 CNRS • 光学材料、光子学和系统实验室 • Laser 2000 • Linkwest • Lorang Innovation • LPICM – 巴黎综合理工学院 • LPMC、尼斯索菲亚安提波利斯大学 • LPN CNRS • LSP-ENSPS-ULP / Rhenaphotonics Alsace • Lumilog • 制造