摘要。玻色子采样是一个计算问题,最近被提出作为获得明确量子计算优势的候选方案。该问题在于从线性干涉仪中不可区分的玻色子的输出分布中进行采样。有强有力的证据表明,这样的实验很难用经典方法模拟,但它可以通过专用的光子量子硬件自然解决,包括单光子、线性演化和光电检测。这一前景激发了大量的努力,从而导致实验性地实现越来越大的设备。我们回顾了光子玻色子采样的最新进展,描述了所取得的技术进步和未来的挑战。我们还讨论了原始问题变体的最新提议和实现、考虑缺陷时出现的理论问题,以及开发用于验证玻色子采样实验的合适技术的进展。最后,我们讨论了光子玻色子采样装置在原始理论范围之外的未来应用。
▶ Aaronson 和 Arkhipov 的技术成果对于计算密钥消耗至关重要,但不需要玻色子采样的经典计算复杂性。 ▶ 我们超越了无碰撞机制 ▶ 使用可访问信息作为安全量化器——量子数据锁定 [8,9]。 ▶ 有界量子存储器:Eve 存储量子信息的时间不会超过有限(已知)的时间。
光子学是一个很有前途的平台,它通过在明确定义的计算任务上超越最强大的经典超级计算机来展示量子计算优势 (QCA)。尽管前景光明,但现有的提案和演示仍面临挑战。在实验上,高斯玻色子采样 (GBS) 的当前实现缺乏可编程性或损失率过高。从理论上讲,GBS 的经典难度缺乏严格的证据。在这项工作中,我们在改进理论证据和实验前景方面取得了进展。我们提供了 GBS 难度的证据,可与 QCA 最强的理论提案相媲美。我们还提出了一种称为高维 GBS 的 QCA 架构,它是可编程的,可以使用少量光学元件以低损耗实现。我们表明,在适中的系统规模下,高维 GBS 实验优于模拟 GBS 的特定算法。因此,这项工作为使用可编程光子处理器展示 QCA 开辟了道路。
我们提出了一种数模量子算法,用于模拟 Hubbard-Holstein 模型,该模型描述了强关联费米子-玻色子相互作用,该算法采用具有超导电路的合适架构。它由一个由谐振器连接的线性量子比特链组成,模拟电子-电子 (ee) 和电子-声子 (ep) 相互作用以及费米子隧穿。我们的方法适用于费米子-玻色子模型(包括 Hubbard-Holstein 模型描述的模型)的数模量子计算 (DAQC)。我们展示了 DAQC 算法的电路深度减少,该算法是一系列数字步骤和模拟块,其性能优于纯数字方法。我们举例说明了半填充双位点 Hubbard-Holstein 模型的量子模拟。在这个例子中,我们获得了大于 0.98 的保真度,表明我们的提议适合研究固态系统的动态行为。我们的提议为计算化学、材料和高能物理的复杂系统打开了大门。
编辑器:J。Hisano通过引人入胜的𝑈(1)𝐵-𝐿标准模型的扩展,可以很好地激发携带𝐵-𝐿电荷之间的颗粒之间的新第五力。量规玻色介质Féeton也是暗物质候选人。在这封信中,我们提出了一种新型的实验设计,以检测使用超导约瑟夫森连接的第五力引起的量子相差异。我们发现,当仪表玻色子质量范围内时,实验对量规耦合具有最佳的敏感性。01 eV至10 eV,这是Féeton暗物质的一个有趣的质量区域。这为毫米以下小规模的新物理学测量开辟了新的途径。
我们报告了量子和经典机器学习技术之间的一致比较,这些技术应用于对矢量玻色子散射过程的信号和背景事件进行分类,该过程在欧洲核子研究中心实验室安装的大型强子对撞机上进行研究。基于变分量子电路的量子机器学习算法在免费提供的量子计算硬件上运行,与在经典计算设施上运行的深度神经网络相比,表现出非常好的性能。特别是,我们表明这种量子神经网络能够正确地对信号进行分类,其特征曲线下面积 (AUC) 非常接近使用相应的经典神经网络获得的特征曲线下面积 (AUC),但使用的资源数量要少得多,训练集中的可变数据也较少。尽管这项工作是在有限的量子计算资源下给出原理证明的演示,但它代表了
•KAON DECAY K0èμμμμμμμμ在1970年通过GIM提示(1974年发现的J/ψ)•3 Rd Quark家族预测1972年解释了Cp Viola 的higgs boson质量〜100 gev的预性
抽象的质子 - 普罗氏素碰撞数据由Atlas检测器在2011年以7 TEV为单位的质量能量记录,已用于改善W -Boson质量的测定,并在LHC处对W -Boson宽度进行了首次测量。最近对质子Parton分布函数的拟合量纳入了测量程序中,并使用改进的统计方法来提高测量精度。W -Boson质量的测量结果得出的值为M W = 80,366。5±9。 8(stat。) ±12。 5(Syst。) mev = 80,366。 5±15。 9 MeV,宽度为W = 2202±32(Stat。) ±34(Syst。) mev = 2202±47 Mev。 第一个不确定性组成部分是实用的,第二个不确定性成分对应于实验和物理模型的系统不确定性。 这两个结果都与从拟合到电cision数据的期望一致。 M W的当前测量与使用相同数据进行的先前测量相兼容并取代。5±9。8(stat。)±12。5(Syst。)mev = 80,366。5±15。9 MeV,宽度为W = 2202±32(Stat。)±34(Syst。)mev = 2202±47 Mev。第一个不确定性组成部分是实用的,第二个不确定性成分对应于实验和物理模型的系统不确定性。这两个结果都与从拟合到电cision数据的期望一致。M W的当前测量与使用相同数据进行的先前测量相兼容并取代。
提出了质子质子碰撞中WWγ产生的观察,在13 TEV的质量中心能量中,呈综合光度为138 fb-1。观察到的(预期)显着性为5.6(5.1)标准偏差。是通过需要两个相反电荷的两个lept子(一个电子和一个muon),中度缺失的横向动量和一个光子来选择事件。WWγ的测得的基准横截面为5。9 0。8ðstatþ0。8ðsystÞ0。7ð建模fb,与次级别量子量子染色体动力学预测一致。通过搜索Higgs玻色子和光子的相关产生进行扩展分析,这是由Higgs Boson与Light Quarks的耦合产生的。该结果用于将希格斯玻色子耦合限制为列夸克。