大分子晶体学对理解疾病的理解产生了重大贡献,更重要的是,如何通过提供蛋白质的原子共生3D结构来治疗它们。这是通过从重要的生物学途径中收集蛋白质晶体的X射线衍射图像来实现的。点调子用于检测具有可用数据的晶体的存在,这些晶体的斑点是用于解决相关结构的主要数据。具有快速准确的斑点查找是必不可少的,但是用于生成X射线衍射图像的同步器束线的最新进展使我们达到了现有最佳的Spotfinders可以做到的范围。必须删除此瓶颈,以便Spotfinder软件可以跟上X射线梁线的加快 - 重新改进,并能够看到解决衍射图像时遇到的最具挑战性问题所需的弱或分散点。在本文中,我们首先介绍Bragg Spot检测(BSD),这是一个大型基准Bragg Spot图像数据集,其中包含304张图像,其中有66 000多个景点。然后,我们与图像预处理,U-NET分割主链以及包括伪像删除和分水岭分段的后加工有关,讨论开源可扩展的基于U-NET的Spotfinder Bragg Spot Finder(BSF),并进行了图像预处理,U-NET分割骨架和后处理。最后,我们对BSD基准进行实验,并获得(就准确性而言)与使用两个流行的Spotfinder软件包(Dozor和Dials)获得的结果相当或更好,这表明这是支持未来扩展和改进的合适框架。
职位 ID 110938 职位描述 准备好接受挑战,让您在情报领域始终处于领先地位吗?想象一下自己与其他经验丰富的专业人士一起执行顶级关键防御任务。 Parsons 现正招聘热衷于创新和解决关键任务挑战的顶级地理空间情报分析师。提供多个级别的职位空缺。 概述:地理空间情报分析师负责执行复杂且及时的地理空间、地形和图像分析,以支持世界各地的作战行动。职责包括但不限于地面特征数据和遥感数据(如多光谱图像 (MSI)、光检测和测距 (LiDAR) 和光电图像)的处理、利用和传播 (PED)。 展示有效的书面和口头沟通技巧,能够向上级和客户介绍技术问题。 根据资历和经验,申请人将被评估为中级、高级或高级地理空间情报分析师。高级地理空间情报分析员权限要求:TS/SCI 安全权限资格和经验/要求:• 要求在国防部或相关非国防部雇主内至少有六年分析经验,
单色光或进入特定周期性培养基的物质波显示出尖锐的bragg散射到特定的角度。然而,随机干扰完美的晶格位置会导致布拉格峰之间的弥散散射。随着分散体的增加,弥散散射最终占主导地位,最后,布拉格峰消失了。弥散散射是结构化的,在介质中揭示了相关性。例如,用于在水中X射线散射[1,2],可见光在单分散聚苯乙烯珠的无序堆积中的散射[3,4],这对相关函数具有宽峰,具有特征长度尺度,这又在结构函数中产生宽峰。在无序培养基的研究中,布拉格峰与周期性结构有关[5,6]。但是,没有预期的是,在任何规模上没有完美顺序的随机介质可以产生尖锐的散射角度,但我们在这里报告了这样的情况。对于我们选择的潜力,空间自相关函数具有宽峰,因为原子对相关函数在水中,但散射角度仍然非常清晰。这很令人震惊;下面定义的随机电势中的散射就像是在周期性电势中的布拉格散射,而不是相关液体中的散射。最接近的类似物(尽管不是完美的类似物)是粉末衍射,许多随机定向的微晶被密切包装。下面定义的电势没有这样的“微晶”,但它具有bragg峰。但是,散射的时间演变与Fermi的黄金法则不兼容,如下所述。我们通过检查电势的傅立叶成分来计算散射矩阵元素或等效地来解释这一惊喜。我们考虑以下形式的随机电势
布拉格中心与业界的战略合作伙伴关系不断发展,这有助于提高其全球声誉,使布拉格中心成为材料科学研究卓越的国际中心。中心的成员在多个学科领域进一步增长,其新兴的跨学科研究人员社区和团队被公认为致力于发展积极和包容的研究文化。全面的活动计划的推出、成功的实习、有影响力的本科、博士和外展计划进一步促进了布拉格中心在过去一年的成功,这些计划显示出切实的好处,使我们的学生在整个学习过程中茁壮成长,并毕业成为能够改变世界的研究领袖。
本文报道了钙钛矿太阳能电池的数值模型,该电池与分布式布拉格反射器对相结合以获得高能量效率。提出的电池的几何形状用三种不同的钙钛矿材料模拟,包括 CH 3 NH 3 PbI 3 、 CH 3 NH 3 PbBr 3 和 CH 3 NH 3 SnI 3 。与无毒钙钛矿材料相比,基于碘化铅和溴化铅的有毒钙钛矿材料似乎更有效。具有最高效率结构执行的模拟光伏参数为开路电压 = 1.409 (V)、短路电流密度 = 24.09 mA/cm 2 、填充因子 = 86.18% 和效率 = 24.38%。此外,对当前研究与不同类型结构进行了比较,令人惊讶的是,我们的新几何形状具有增强的性能参数,这些参数以背反射器对(Si/SiO 2 )为特征。应用的数值方法和所呈现的几何设计努力有利于获得有可能解决效率较低的薄膜太阳能电池问题的结果。
在大部分多晶样品中对局部应变的成像需要对纳米镜面水平的晶体结构变形具有高渗透深度和敏感性的探针。随着同步器仪器的重大进展,这是可能的,特别是在过去二十年中开发的一致散射方法。Bragg相干衍射成像(CDI)(Robinson等人,2001年; Miao等。,2002年; Pfeifer等。,2006年; Robinson&Harder,2009年)现在被确定为成像单个纳米晶体中的结构变形和结构缺陷的强大工具(Ulvestad等人。,2015年; Kim等。,2021)。由于晶体通常是多种多样的,因此测量不同位置的几个颗粒以收集样品中足够的统计信息(Singer等人。,2018年)。在此类实验中通常未知测量颗粒的精确位置,因此通常假定样品的均匀性。对于材料响应不统一的系统,获取位置信息很重要。例如,在带有厚度阴极的锂离子电池中,预计充电行为将取决于阴极表面下的深度(Zheng等人。,2012年; Lee等。,2018年)。增强Operando Bragg CDI的能力,并可以绘制测得的颗粒的可能性将在单个纳米颗粒的性能与超厚电极的3D结构之间提供缺失的联系。,2012年),作为解决此问题的一般解决方案,在这里,我们建议一种确定Bragg CDI实验中测得颗粒的3D位置的方法。我们的方法与涉及从微观摄影中跨相关性检测旋转中心检测的程序有一些相似之处(Pan等
产生 X 射线的第一步是通过 25-35 kV 的大电位差加速电子。当电子撞击钼靶时,它们会通过称为轫致辐射(断裂辐射)的过程减速。当小质量带电粒子(例如电子)经过大质量带电粒子(例如钼原子核)附近时,就会产生 X 射线。电子通过多次散射原子核而快速减速,从而导致发射多条 X 射线,在极少数情况下,当电子将其所有动能都交给单个原子核时,会发射出一条高能 X 射线。最后一个过程对应于 X 射线能谱的终点能量,这可通过查看图 2 中所示的光谱左端来观察。钼表面(阳极)与入射电子束成一定角度,以利于在特定方向产生 X 射线。图 2 显示了钼靶的能量谱。距离其产生点不远处是一个准直管,它允许一条狭窄的水平 X 射线带通过,到达结晶的 NaCl 靶。当 NaCl 靶(搁置在测角仪上)相对于入射 X 射线的角度倾斜刚好正确(θ)时,就会发生建设性干涉,并且在位于 2 θ 角的盖革-穆勒管中可以观察到增加的计数率(计数/秒)。如图 3 所示。