摘要 - 通过捕获大脑活动的消费者可穿戴设备的出现,已提出使用脑电波来验证用户身份的使用,以作为密码的方便替代品。最近在脑生物识别方面的工作显示出可行的性能,但考虑实用性的适用性不足。我们提出了一种新的解决方案Brainnet,该解决方案训练一个暹罗网络,以测量两个脑电图(EEG)输入的相似性,并使用时间锁定的大脑反应而不是连续的心理活动来提高准确性。这种方法消除了对脑电波识别系统进行检验的需求,这是当前解决方案中的常见陷阱,促进了实际部署。此外,Brainnet在验证模式下达到0.14%的误差率(EER),在识别模式下达到0.34%,即使在看不见的攻击者场景下进行评估时,也表现出色的状态。索引术语 - 脑生物识别技术,用户身份验证,计算机安全,脑电图(EEG)
癫痫是最严重的神经系统疾病之一,影响着世界人口的 1-2%。癫痫的诊断在很大程度上取决于对癫痫波的识别,即患者大脑中紊乱的脑电波活动。现有的研究已经开始采用机器学习模型通过皮层脑电图 (EEG) 检测癫痫波,EEG 是指通过对患者头皮表面进行无创检查以记录大脑电活动而获得的大脑数据。然而,最近发展的立体脑电图 (SEEG) 方法提供比传统 EEG 更精确的立体信息,并且已广泛应用于临床实践。因此,在本文中,我们提出了第一个数据驱动的研究来在现实世界的 SEEG 数据集中检测癫痫波。SEEG 在提供新机遇的同时,也带来了一些挑战。在临床实践中,癫痫波活动被认为在大脑的不同区域之间传播。这些传播路径,也称为致痫网络,被视为癫痫手术中的关键因素。然而,如何为每位患者提取精确的致痫网络仍然是神经科学领域的一个悬而未决的问题。此外,癫痫波和 SEEG 数据的性质不可避免地会导致标签极度不平衡和严重噪声。为了应对这些挑战,我们提出了一个新模型(BrainNet),该模型联合学习动态扩散图并建模脑波扩散模式。此外,我们的模型通过采用多个自监督学习任务和分层框架,有效地帮助抵抗标签不平衡和严重噪声。通过对从多名患者获得的大量真实 SEEG 数据集进行实验,我们发现 BrainNet 的表现优于来自时间序列分析的几个最新的最先进基线。