(a)在Maestro MEA™系统上将Brainphys™神经元介质(目录#05790)培养的HPSC衍生的神经元(目录#05790)铺平。(b)神经元在15周内发挥电活性,从第8周增加到第16周的平均点火率逐渐增加。(c)栅格图在不同时间点显示了64个电极上神经元的发射模式。每条黑线代表一个检测到的尖峰。每条蓝线代表一个单个通道突发,收集至少5个尖峰,每个峰值由ISI≤100ms分隔。每个粉红色框都表示网络爆发,这是整个井中至少25%参与电极的至少10个尖峰的集合,每个电极的ISI≤100ms。在Brainphys™神经元培养基中培养的神经元表现出电活动,如随着时间的推移的增加所示。此外,网络爆发频率也增加了,这表明随着神经元的成熟,神经元的发射逐渐组织成同步网络爆发。isi =跨度间隔
神经器官是建模发育过程和疾病机制的宝贵工具。但是,器官结构的变异性和缺乏标准化协议可能会使它们用于功能分析的使用复杂化。此外,诸如不足的神经胶质支持和神经元发育所需的较长成熟时间之类的挑战使得衡量一致的器官活动和功能特征很难。在这里,我们提供了标准化的工作流,用于使用三个STEMDIFF™类器官分化试剂盒生成中脑,大脑和脊髓器官,然后在StemDiff™神经器官维护套件或Brainphys™Neuronal培养基中成熟。诱导与疾病相关的表型,并使用微电极阵列(MES)测量功能输出。我们的数据表明,使用STEMDIFF™器官分化试剂盒生成的神经器官在长期培养后在STEMDIFF™神经器官维持试剂盒或Brainphys™神经元介质中长期培养后表现出强大的神经活动,为神经元疾病建模和药物发现提供了可靠的平台。
无法治愈运动神经元(MN)疾病,例如肌萎缩性侧索硬化和脊柱肌肉萎缩。访问可靠的人类MN模型将是无价的,可以帮助发现疾病机制。晚期培养模型(例如脊髓器官)(SCO)包含各种组织特异性细胞类型,包括MN,神经胶质细胞和中间神经元,从而提高了其生理相关性。在这里,我们描述了STEMDIFF™脊髓器官分化套件,该套件从高效率上产生人类多能干细胞(HPSC)的SCO。我们的数据表明,STEMDIFF™脊髓器官分化套件可以产生来自多个HPSC系的MN,中间神经元和神经胶质细胞的SCO。与背侧前脑器官相比,这些HPSC衍生的SCO在明显更高的水平上表达了MN标记。此外,SCO在维持培养物中在4周内显示出自发的电生理结构,并在Brainphys™基于Brainphys™的培养基中成熟时显示出更多的爆发。综上所述,STEMDIFF™脊髓器官分化套件提供了一种强大的工具,可以生成功能性HPSC衍生的SCO,用于人类MN疾病的体外研究。