摘要 芸苔属植物是人类营养物质和食用植物油的全球来源。然而,所有具有商业价值的芸苔属作物都经历了全基因组三倍化事件,阻碍了功能基因组学和育种计划的发展。幸运的是,成簇的规律间隔短回文重复序列 (CRISPR)/CRISPR 相关 (Cas) 技术通过实现多重和精确的基因组工程,已成为有价值的基因组编辑工具,为生物技术开辟了新的途径。在这里,我们回顾了 CRISPR/Cas 技术使用的最新进展,重点介绍了精确基因组编辑的最新突破。我们还总结了 CRISPR/Cas 技术在芸苔属作物性状改良中的应用。最后,我们讨论了这些技术在芸苔属作物中全面应用的挑战和未来方向。CRISPR/Cas 技术的持续进步与其他成果相结合,将在芸苔属作物的遗传改良和分子育种中发挥重要作用。
食物过敏是全球一个主要的健康问题。现代繁殖技术,例如通过CRISPR/CAS9进行基因组编辑,有可能通过靶向植物中的过敏原来减轻这种情况。这项研究介绍了主要的过敏原胸罩J i,这是2S白蛋白类的种子储存蛋白,在异形棕色芥末(Brassica Juncea)中。印度基因银行加入(CR2664)和德国品种Terratop的副卵形植物使用具有多个单一指南RNA的二进制载体的农业杆菌进行了转化,以引起大型删除或两种Bra J I or词的大型删除或Frameshift突变。总共获得了49 T 0线,最多3.8%的转化效率。在胸罩J ib等位基因中,四行的删除为566,最高790 bp。在18条Terratop t 0线中,有9条带有靶向区域的indels。从16个分析的CR2664 t 0行,14行持有的indels和3个具有四个Bra J I等位基因突变。CRISPR/CAS9引起的大多数突变是t 1后代遗传的。在一些编辑的线中,种子的形成和生存能力降低,种子显示出胚胎的早熟发育,导致滴虫已经破裂。使用新开发的BRA J I特异性抗体进行免疫印迹,显示了所选系的种子提取物中要降低或不存在的胸罩J I蛋白的量。从芥末中去除偏远的决定因素是迈向开发更安全的食品作物的重要第一步。
摘要:光系统Ⅱ是叶绿体的重要组成部分,其修复过程对缓解光抑制至关重要,对提高植物的抗逆性和光合效率具有重要意义。致死基因被广泛应用于基因编辑的效率检测和方法改进。本研究在油菜中发现了一个自然发生的致死突变体7-521Y,该突变体子叶黄化,受双隐性基因cyd1和cyd2控制。通过全基因组重测序和图位克隆相结合的方法,利用15 167个黄化个体将CYD1精细定位到29 kb的基因组区域上。通过对转基因进行共遗传分析和功能验证,确定BnaC06.FtsH1为目的基因;它编码一个丝状温度敏感蛋白H 1 (FtsH1)水解酶,能够降解拟南芥中受损的PSII D1。BnaC06.FtsH1在甘蓝型油菜的子叶、叶片和花中表达量较高,且定位于叶绿体中。此外,在7-521Y中,FtsH上游调控基因EngA的表达上调,D1的表达下调。FtsH1和FtsH5的双突变体在甘蓝型油菜中是致死的。通过系统发育分析发现,在芸苔属植物中FtsH5的丢失,剩下的FtsH1是PSII修复周期所必需的。CYD2可能是甘蓝型油菜A07染色体上FtsH1的同源基因。我们的研究为致死突变体提供了新的见解,其发现可能有助于提高油菜 PSII 修复周期的效率和生物量积累。
摘要。nthocyanin高蓄能是一种重要的农业特征,与对非生物胁迫,害虫,植物致病性真菌和细菌性疾病的抗性有关。B. Napus随着基因组编辑而产生的花色素色素化增加。MYB家族的许多转录因子都参与压力反应和花青素生物合成。基因ATMYB60,ATCPC和ATMYBL2是拟南芥中花青素生物合成的负调节剂,因此这些基因的敲除可以导致花呢素色素沉着增加。GRNA垫片合成以靶向这些基因的直系同源物,这些基因在甘蓝甘蓝中鉴定出来。通过农业浸润将遗传构建体引入植物组织。靶向myb转录因子的DNA结合结构域的GRNA的瞬态表达以及CAS9核酸酶成功促进了花青素的高蓄积。这些遗传构建体可用于基因组编辑和生产新的有色和胁迫的油料种子强奸品种。
摘要孤儿基因(OG S)是特定分类群独有的基因,在原代新陈代谢中起着至关重要的作用。然而,对于我们先前的研究中鉴定出的铜管rapa og s(brog s)的功能意义知之甚少。为了研究其生物学功能,我们在拟南芥中开发了43个基因的Brog过表达(Brog OE)突变库,并评估了植物的表型变异。我们发现43个Brog OE突变体中有19个表现出突变体表型,而42个显示出可变的糖含量。选择了一个突变体Brog1 OE,具有显着升高的果糖,葡萄糖和总糖含量,但蔗糖含量降低,以进行深度分析。Brog1 OE显示出拟南芥合成酶基因(ATSUS)的表达和活性降低;但是,转化酶的活性没有变化。In contrast, silencing of two copies of BrOG1 in B. rapa, BraA08002322 ( BrOG1A ) and BraSca000221 ( BrOG1B ), by the use of an ef fi cient CRISPR/Cas9 system of Chinese cabbage ( B. rapa ssp.campestris)由于brsus1b,brsus3的上调,果糖,葡萄糖和总可溶性糖含量降低,并且特定于编辑的Brog1转基因线中的BRSUS5基因。此外,我们观察到蔗糖含量增加和Brog1突变体中的SUS活性,转化酶的活性保持不变。因此,Brog1可能以SUS依赖性方式影响了可溶性糖代谢。这是研究Brog S在可溶性糖代谢方面的功能的第一份报告,并强化了OG S是营养代谢的宝贵资源的观念。
农杆菌介导的菜籽(甘蓝纳普斯)通过下胚轴段转化是过去30年来常用的一种方法。虽然基于下胚基的方法是良好的,但它不容易适应精英种质,并且延长过程对于生产转化设置并不理想。我们开发了一种基于上皮基和较高的茎(损伤)段的农杆菌介导的转化方法,该方法有效,快速且可用于高通量转化和基因组编辑。该方法已在多种低芥酸菜籽基因型中成功实现。该方法似乎是与基因型无关的,具有不同的转化效率。节日段转换用于产生转基因事件以及CRISPR-CAS9介导的移码基因敲除。
农杆菌介导的转化是一种将外源基因转化为植物的广泛使用的方法。烟草(Nicotiana tabacum L.)是遗传转化中的模型植物。下面描述了将烟草用作模型植物的几个原因如下:(1)烟草叶片很容易被器官发生再生(Constantin等,1977)。(2)当植物需要从实验室转移到温室状况时,烟草植物很容易采用环境的变化(Chandra等,2010; Jube&Borthakur,2007)。良好采用环境会提高再生率。(3)烟草植物的生物量产量很高,因此可以轻松生产重组蛋白来用于分子种植(Twyman等,2003)。如今,烟草的分子遗传学和基因组图进行了充分的研究,几乎完成了(Jube&Borthakur,2007)。烟草中遗传转化的研究和应用为其他植物的转化系统提供了前景和参考。
背景:顶花基因1(TFL1)属于磷脂酰乙醇胺结合蛋白(PEBP)家族,在高等植物花分生组织身份决定及开花时间调控中起重要作用。结果:在油菜基因组中鉴定出5个BnaTFL1基因拷贝。系统发育分析表明,5个BnaTFL1基因拷贝与祖先种芜菁和甘蓝中相应的同源拷贝聚集在一起。BnaTFL1的表达局限于花芽、花、种子、角果和茎组织中,并表现出不同的表达谱。利用CRISPR/Cas9技术产生的BnaC03.TFL1敲除突变体表现出早花表型,而其他基因拷贝的敲除突变体开花时间与野生型相似。此外,BnaTFL1基因单个拷贝的敲除突变体表现出了植株结构的改变,BnaTFL1突变体的株高、分枝起始高度、分枝数、角果数、每角果种子数和主花序上的角果数均显著减少。
全球变暖、干旱、洪水和其他极端事件等气候变化的影响对全球作物生产构成了严峻挑战。油菜对油料产业的贡献使其成为国际贸易和农业经济的重要组成部分。这种作物遭受的多种非生物胁迫越来越多,导致农业经济损失,因此,让油菜作物在同时面临多种非生物胁迫时具有生存和维持产量的能力至关重要。为了更好地了解压力感知机制,需要分析多种压力响应基因和其他调控元件(如非编码 RNA)的调控途径。然而,我们对这些途径及其在油菜中的相互作用的理解还远未完成。本综述概述了目前对压力响应基因及其在赋予油菜多种压力耐受性方面的作用的了解。通过组学数据挖掘分析网络串扰现在使得揭示植物压力感知和信号传导所需的潜在复杂性成为可能。本文还讨论了新型生物技术方法,例如无转基因基因组编辑和利用纳米粒子作为基因传递工具。这些方法有助于为开发具有更少监管限制的、能够抵御气候变化的油菜品种提供解决方案。本文还强调了合成生物学通过微调应激调节元件来设计和修改网络的潜在能力,以适应植物对应激的适应。
回应了孟山都公司(以下称为孟山都)的请愿书11-188-01p,美国农业部(USDA)的动物和植物健康检查服务(Aphis)(APHIS)(USDA)已确定88302 CANOLA和OPENITY不太可能被视为pose pose pose soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph,在《联邦法规守则》第7章中,第340部分(7 CFR第340部分)。由于Aphis确定了88302 Canola不太可能构成植物害虫风险,因此Aphis会批准对非管制状态的请愿书88302 CANOLA。因此,Aphis批准的许可证或已确认的通知,这些通知将不再需要这些法规下的环境释放,州际运动或进口,而Mon 88302 Canola及其后代则不再需要。在7 CFR第319部分的Aphis外国隔离通知和第7 CFR部分的《联邦种子法》条例中,仍将遵守Aphis外国隔离通知。