摘要。脑转移瘤 (BM) 是最常见的脑肿瘤。使用立体定向放射外科治疗多发性 BM 患者需要准确定位转移瘤。神经网络可以协助完成这项通常由人类专家执行的耗时且昂贵的任务。检测小病变尤其具有挑战性,因为它们在现有方法中往往代表性不足。然而,病变检测对所有大小都同样重要。在这项工作中,我们开发了一组神经网络,专门用于检测和分割小 BM。为了完成这项任务,我们训练了几个神经网络,专注于 BM 分割问题的各个方面:我们使用 blob 损失来专门解决病变实例在大小和纹理方面的不平衡,因此不会偏向较大的病变。此外,使用 T1 和 T1 对比增强序列之间的减法序列的模型专注于低对比度病变。此外,我们只针对小病变训练额外的模型。我们的实验证明了额外的 blob 损失和减法序列的效用。然而,在集成中包含专门的小病变模型会使分割结果变差。我们还发现,受领域知识启发的后处理步骤可以在大多数实验中大大提高我们的性能。我们的方法使我们能够向 ASNR-MICCAI BraTS 脑转移挑战赛 2023 提交具有竞争力的挑战参赛作品。
脑肿瘤是大脑中癌细胞的不受控制的生长。肿瘤的准确分割和分类对于随后的预后和治疗计划至关重要。这项工作提出了有关使用结构多模式磁共振图像(MMRI)的脑肿瘤分割,亚型分类和总生存预测的深入学习的上下文学习。我们首先提出了3D上下文意识深度学习,该学习认为放射学MMRI图像子区域中肿瘤位置的不确定性以获得肿瘤分割。然后,我们将常规的3D卷积神经网络(CNN)应用于肿瘤段,以实现肿瘤亚型分类。最后,我们使用深度学习和机器学习的混合方法进行生存预测。为了评估性能,我们将提出的方法应用于2019年多模式脑肿瘤分割挑战(BRATS 2019)数据集,以进行肿瘤分割和整体生存预测,以及计算精度医学放射学-Pathology(CPM- rad Path)对脑肿瘤分类2019年对Tumor Classification for Tumor Classification的数据集。我们还基于流行的评估指标,例如骰子得分系数,Hausdorff距离(HD95)(HD95),分类准确性和均方误差,进行广泛的绩效评估。结果表明,所提出的方法分别提供了稳健的肿瘤分割和存活预测。此外,在2019年CPM-Radpath全球挑战的测试阶段,肿瘤分类导致这项工作排名第二。
摘要由于磁共振成像(MRI)具有较高的软组织对比度,因此在MRI图像中,对肿瘤的轮廓(脑)肿瘤在医学图像过程中至关重要。对肿瘤进行精确分割是巨大的挑战,因为肿瘤和正常组织通常在大脑中密不可分地交织在一起。手动耗时也非常耗时。后期的深度学习技术开始在脑肿瘤分割中表现出可取得的成功。这项研究的目的是开发一种新的兴趣区域(ROI ADED)深度学习技术,用于自动脑肿瘤MRI分割。该方法由两个主要步骤组成。第一步是使用具有U-NET结构的2D网络来定位肿瘤ROI,这是为了产生正常组织干扰的影响。然后,在第2步中执行3D U-NET,以进行识别的ROI内的肿瘤分割。该提出的方法在MIC-CAI BRATS 2015挑战中得到了验证,其中220个高神经胶质瘤级(HGG)和54个低神经胶质瘤级(LGG)患者的数据。骰子相似性系数和手动肿瘤轮廓之间的Hausdorff距离分别为0.876±0.068和3.594±1.347 mm。这些数字表明我们所提出的方法是用于大脑MRI肿瘤分割的有效的ROI ADEAD深度学习S,并且是医学图像处理中的有效且有用的工具。
基于深度学习的脑肿瘤分割模型遇到的最具挑战性的问题之一是,由于类别表示固有的不平衡,导致肿瘤组织类别分类错误。因此,在训练用于脑肿瘤分割的大规模深度学习模型时,通常会考虑强正则化方法,以克服对代表性组织类型的过度偏见。然而,这些正则化方法往往在计算上是详尽的,并且可能无法保证学习代表输入 MRI 示例中存在的所有肿瘤组织类型的特征。最近使用深度 CNN 模型进行上下文编码的工作已显示出对自然场景语义分割的希望,特别是由于改进了代表性特征学习,小物体分割得到了改善。因此,我们提出了一种新颖、高效的基于 3DCNN 的深度学习框架,该框架具有上下文编码,用于使用多模态磁共振成像 (mMRI) 进行语义脑肿瘤分割。所提模型中的上下文编码模块强制进行丰富的、与类别相关的特征学习,以提高整体多标签分割性能。随后,我们在基于机器学习的生存预测管道中使用上下文增强特征来提高预测性能。使用公开的2019年脑肿瘤分割(BraTS)和生存预测挑战数据集对所提方法进行评估,结果表明,所提方法显著提高了肿瘤组织分割性能和整体生存预测性能。
脑肿瘤分割是医学图像处理的最重要方法之一。非自动分割广泛应用于临床诊断和药物治疗。然而,这种分割在医学图像中不准确,特别是在脑肿瘤方面,而且可靠性较低。本文的主要目的是开发一种脑肿瘤分割方法。本文提出了一种卷积神经网络和模糊K均值算法的组合来分割脑肿瘤的病变区域。它包含三个阶段:图像预处理以降低计算复杂度、属性提取和选择以及分割。首先,使用自适应滤波器和小波变换对数据库图像进行预处理,以从噪声状态中恢复图像并降低计算复杂度。然后通过提出的深度神经网络进行特征提取。最后,通过模糊K均值算法进行处理,分别分割肿瘤区域。本文的创新之处在于实现具有最佳参数的深度神经网络,识别相关特征并删除不相关和重复的特征,目的是观察能够很好地描述问题的特征子集,同时尽量减少效率降低。这可以减少特征集,在操作过程中存储数据收集资源,并减少总体数据以限制存储需求。所提出的分割方法已在 BRATS 数据集上得到验证,准确率为 98.64%,灵敏度为 100%,特异性为 99%。
利用最佳质量传输 (OMT) 技术将不规则的 3D 脑图像转换为立方体(U-net 算法所需的输入格式),这是医学成像研究的全新思路。我们开发了一个立方体体积测量保留 OMT (V-OMT) 模型来实现这种转换。脑图像中流体衰减反转恢复 (FLAIR) 的对比度增强直方图均衡灰度创建了相应的密度函数。然后,我们提出了一种有效的两相残差 U-net 算法与 V-OMT 算法相结合进行训练和验证。首先,我们使用残差 U-net 和 V-OMT 算法精确预测整个肿瘤 (WT) 区域。其次,我们使用扩张来扩展这个预测的 WT 区域,并通过将与脑图像中 WT 区域相关的阶梯状函数与 5×5×5 模糊张量卷积来创建平滑函数。然后,构建一种具有网格细化的新 V-OMT 算法,使残差 U-net 算法能够有效地训练 Net1-Net3 模型。最后,我们提出集成投票后处理来验证脑图像的最终标签。我们从包含 1251 个样本的脑肿瘤分割 (BraTS) 2021 训练数据集中随机选择了 1000 个和 251 个脑样本,分别用于训练和验证。Net1-Net3 计算的 WT、肿瘤核心 (TC) 和增强肿瘤 (ET) 区域的验证 Dice 分数分别为 0.93705、0.90617 和 0.87470。脑肿瘤检测和分割的准确性显著提高。
人类脑肿瘤,更具体地说是神经胶质瘤,是最危及生命的癌症之一,通常由神经胶质干细胞异常生长引起。实际上,磁共振成像 (MRI) 模态提供不同的对比度来阐明组织特性,提供有关大脑结构的全面信息以及检测肿瘤的潜在线索。因此,多模态 MRI 通常用于诊断脑肿瘤。然而,由于获取的模态集可能因临床部位而异,脑肿瘤研究可能会遗漏一两种 MRI 模态。为了以端到端的方式解决缺失信息,我们提出了 MMCFormer,一种新颖的缺失模态补偿网络。我们的策略建立在 3D 高效转换器块之上,并使用共同训练策略来有效地训练缺失模态网络。为了确保多尺度特征一致性,MMCFormer 在编码器的每个尺度上都使用全局上下文一致性模块。此外,为了传输特定于模态的表示,我们建议在瓶颈阶段加入辅助标记,以对完整和缺失模态路径之间的交互进行建模。最重要的是,我们包括特征一致性损失,以减少网络预测中的域差距并提高缺失模态路径的预测可靠性。在 BraTS 2018 数据集上进行的大量实验证明了我们的方法与竞争方法相比的优势。实现代码可在 GitHub 上公开获取。关键词:Transformer、缺失模态、分割、MRI、医学。
我们开发了一种使用深度学习进行脑肿瘤分割的全自动方法;使用了来自 BraTS2018 数据集的 285 个具有多参数磁共振图像的脑肿瘤病例。我们设计了 3 个独立的 3D-Dense-UNets,将复杂的多类分割问题简化为每个子组件的单独二元分割问题。我们实施了 3 倍交叉验证来推广网络的性能。整个肿瘤 (WT)、肿瘤核心 (TC) 和增强肿瘤 (ET) 分割的平均交叉验证 Dice 分数分别为 0.92、0.84 和 0.80。然后,我们使用 285 个病例中的 265 个重新训练各个二元分割网络,其中 20 个病例用于测试。我们还在来自 BraTS2017 验证数据集的 46 个病例、来自 BraTS2018 验证数据集的 66 个病例和来自独立临床数据集的 52 个病例上测试了该网络。在 20 个保留测试用例中,WT、TC 和 ET 的平均 Dice 分数分别为 0.90、0.84 和 0.80。在 BraTS2017 验证数据集、BraTS2018 验证数据集和临床数据集上,WT、TC 和 ET 的平均 Dice 分数分别为:0.90、0.80 和 0.78;0.90、0.82 和 0.80;以及 0.85、0.80 和 0.77。开发了一种全自动深度学习方法将脑肿瘤分割成其子成分,该方法在 BraTS 数据集和独立临床数据集上实现了高预测准确率。该方法有望应用于临床工作流程。
分割算法的疗效经常因拓扑错误,连接中断和空隙等拓扑错误而受到损害。为了解决这一问题,我们引入了一种新颖的损失函数,即拓扑 - 意识局灶性损失(TAFL),该功能将基于基于地面真实和预测段蒙版的持久性图表之间的拓扑结构术语与拓扑结构术语结合在一起。通过实施与地面真理相同的拓扑结构,拓扑的约束可以有效地解决拓扑结构,而焦点损失可以解决阶级失衡。我们首先是从地面真理和预测的分割掩模的过滤的立方复合物中构造持久图。随后,我们利用sindhorn-knopp算法来确定两个持久图之间的最佳运输计划。最终的运输计划最小化了将质量从一个分布到另一个分布的运输成本,并在两个持久图中的点之间提供了映射。然后,我们根据该旅行计划计算沃斯堡的距离,以测量地面真相和预测的面具之间的拓扑差异。我们通过训练3D U-NET与MICCAI脑肿瘤分割(BRATS)CHALLENE验证数据集来评估我们的方法,该数据需要准确地分割3D MRI扫描,从而整合各种方式,以精确鉴定和跟踪恶性脑肿瘤。然后,我们证明,通过添加拓扑约束作为惩罚项,通过将焦点损失正规化来提高分段性能的质量。
摘要:由于人脑的敏感性,从图像中正确分割脑肿瘤对于患者和医务人员都非常重要。手术干预需要医生非常谨慎和精确地瞄准大脑所需的部位。此外,分割过程对于多类肿瘤分类也很重要。这项工作主要集中在脑磁共振图像处理的三个主要领域进行分类和分割,即:脑磁共振图像分类、肿瘤区域分割和肿瘤分类。提出了一个名为DeepTumor的框架,用于将多阶段多类胶质瘤肿瘤分类为四类;水肿、坏死、增强和非增强。对于脑磁共振图像二元分类(肿瘤和非肿瘤),提出了两个深度卷积神经网络 (CNN) 模型用于脑磁共振图像分类; 9层模型,共有217,954个可训练参数,以及一个改进的10层模型,共有80,243个可训练参数。在第二阶段,提出了一种基于增强模糊C均值(FCM)的技术用于脑MRI图像中的肿瘤分割。在最后阶段,提出了一个增强的CNN模型3,该模型具有11个隐藏层,共有241,624个可训练参数,用于将分割后的肿瘤区域分为四个胶质瘤肿瘤类。实验使用BraTS MRI数据集进行。将提出的CNN模型用于二分类和多类肿瘤分类的实验结果与现有的CNN模型(如LeNet,AlexNet和GoogleNet)以及最新文献进行了比较。
