首字母 职位 薪酬(美元) 费用(美元) 管理 Airth K 建筑服务主管 94,875 3,193 Angel Munoz G 通讯顾问 87,297 125 Antunes M 财务规划经理 134,445 2,026 Aylard P 高级项目经理 128,464 2,188 Babcock C 活动开发主管 97,023 4,463 Baines R 能源经理 93,685 2,714 Bancarz M 车队服务主管 94,974 1,574 Barton T 发展规划部经理 108,296 4,841 Bayat M 发展服务总监 163,472 3,419 Bazett A 政府间关系经理 101,506 11,987 Beach B 基础设施交付部经理 167,123 128 Bedell J 紧急支持服务主管 104,013 4,013 Bennett W 机场值班经理 89,074 3,801 Bentley L 市政文员 112,101 9,101 Black J 城市规划经理 84,456 1,931 Boehm A 智能城市经理 115,953 825 Bos H 基础设施运营部经理 150,911 19 Brennan J 业务服务应用经理 132,037 6,378 Brunner T 能源专家 87,341 222 Budde A 安全和业务连续性经理 99,407 1,060 Buettner M 创新顾问 81,005 1,860 Bushell S 高级项目经理 121,465 4,009 Butt H 资产系统经理 121,026 1,324 Cairney B 交通信号& 系统主管 119,382 1,776 Campbell L 交通运营与技术支持主管 109,890 - Castorf H 机场项目经理 106,841 41 Caul D 社区安全主管 164,569 3,306 Cavanaugh M 公司记录与信息分析师 87,406 - Cavezza B 人力资源计划与系统经理 106,282 2,335 Chan C 项目经理 111,036 100 Chapman N 开发工程经理 129,079 508 Choy R 展览控制员 80,091 - Coates S 警务服务运营经理 119,611 415 Collier E 设施运营主管 84,310 2,584 Corcoran L 通讯部门经理 144,671 145 Cormier R 展览控制员 76,865 - Corning D 高级项目经理 119,742 215 Cornock C 社会发展经理 113,342 5,685 Creighton D 运动场和灌溉主管 96,569 4,776 Cridge L 财务系统和规划经理 84,798 802 Davidson G 金融服务部门主管 109,352 - De Vies L 业务规划和结果经理 91,996 - DeGruchy J 高级项目经理 131,534 3,048 Dempsey L 公用事业工程师 108,127 1,578 Dombowsky J 交通和项目经理 115,359 1,232
与其他大学相比,上大学是一件相当不错的事。毕竟,许多人在大学期间都是在最高安全监狱度过的,或者在 18 岁时就被两个患有肠绞痛的孩子和一个屁股像装满比斯奎克的塑料袋一样的妻子困住了。你本可以不被高等学府录取,而是和你那脾气暴躁的叔叔一起从事石棉清除业务,或者在殡仪馆找一份发型师的工作,或者死于吃垃圾食品,然后转世为 Nell Carter 的丝瓜络。当然,我对大学的记忆被大脑散光所扭曲,导致 20-800 年后的回想,让我的校园时光像最初吸引我去那里的大学目录一样田园诗般美好。回到了极乐世界,那里到处都是美丽的女孩。来自欧洲的男生,他们会和你一起打球,给你买啤酒,借给你五英镑,给你他们的 Spans lilustruieels——更像是暑假的延长,而不是学习的痛苦中心。发布这些小册子的人并没有撒谎,他们只是离开大学几年,和我一样,现在必须谋生,所以相比之下,校园生活全是蜂蜜和蜂鸟。当然,实际上,大学生活就是没完没了地背诵枯燥的历史书,满身粉笔和灰尘的教授打你的女朋友,啤酒太便宜了,尝起来就像被重金属污染了,污染了仍然粉红嫩滑的大脑和像牛奶喂养的小牛肉一样干净新鲜的肝脏。然而,与今天的世界相比,每个人的生活都依赖于百忧解、阿斯巴甜、小麦过敏、前列腺肥大、布洛芬、对亚硫酸盐的恐惧、米诺地尔和回收利用,学术就像鸦片梦一样飘忽不定。我认为每个大学生的目标都应该是像婴儿潮一代的嬉皮士一样接受尽可能多的教育。在他们上大学之前,人类体验的深度和荣耀是未知的。真正的爱、真正的狂喜、真正的痛苦是未知的情感。我相信莱纳·马利亚·里尔克和鲁伯特·布鲁克躺在耻辱的坟墓里,因为他们无法像婴儿潮一代那样敏锐地理解自己诗歌的含义。
Anzalone AV、Randolph PB、Davis JR、Sousa AA、Koblan LW、Levy JM、Chen PJ、Wilson C、Newby GA、Raguram A 等人 (2019) 无需双链断裂或供体 DNA 的搜索和替换基因组编辑。Nature 576:149–157 Bastet A、Zafirov D、Giovinazzo N、Guyon-Debast A、Nogué F、Robaglia C、Gallois JL (2019) 通过 CRISPR-Cas9 碱基编辑模拟 eIF4E 中的天然多态性与对马铃薯病毒的抗性有关。Plant Biotechnol J 17:1736–1750 Butt H、Rao GS、Sedeek K、Aman R、Kamel R、Mahfouz M 通过水稻中的 prime 编辑实现除草剂抗性工程化。Plant Biotechnology Journal。 doi: 10.1111/pbi.13399 Fauser F, Schiml S, Puchta H (2014) 基于 CRISPR/Cas 的核酸酶和切口酶均可有效用于拟南芥的基因组工程。Plant J 79 : 348–359 Henikoff S, Comai L (2003) 植物功能基因组学的单核苷酸突变。Annual Review of Plant Biology 54 : 375–401 Hua K, Jiang Y, Tao X, Zhu JK 利用 prime editing 系统对水稻进行精准基因组工程。Plant Biotechnology Journal。doi: 10.1111/pbi.13395 Huang TK, Puchta H (2019) CRISPR/Cas 介导的植物基因打靶:同源重组终于迎来转机。 Plant Cell Rep 38 : 443–453 Li H, Li J, Chen J, Yan L, Xia L (2020) 通过 Prime Editing 对水稻外源和内源基因的精确修改。Molecular Plant 13 : 671–674 Lin Q, Zong Y, Xue C, Wang S, Jin S, Zhu Z, Wang Y, Anzalone AV, Raguram A, Doman JL 等人 (2020) 水稻和小麦的 Prime 基因组编辑。Nat Biotechnol 38 : 582–585 Mishra R, Joshi RK, Zhao K (2020) 作物中的碱基编辑:当前进展、局限性和未来影响。 Plant Biotechnol J 18 : 20–31 Sevestre F, Facon M, Wattebled F, Szydlowski N (2020) 促进马铃薯基因编辑:Solanum tuberosum L. cv. Desiree 基因组的单核苷酸多态性 (SNP) 图谱。Sci Rep 10 : 2045
通函附录 2 号314-04-1862c,日期为 2022 年 11 月 22 日,《远洋船舶入级与建造规范》,2022 年,ND 号2-020101-152-E 第十四部分。焊接 2 焊接技术要求 1 第 2.10.1 和 2.10.2 款由以下文字替代:ʺ 2.10.1 焊接操作允许采用以下焊接工艺进行:111、131、141、43,这些工艺应确保焊接接头质量良好,具有最大强度、化学成分与母材相似,并具有足够的耐腐蚀性。2.10.2 焊接接头应尽可能位于承受最小应力的区域。焊接余高只能在经登记处特别批准后才能拆除。ʺ。2 2.10.10 款由以下内容替代:ʺ 2.10.10 摩擦搅拌焊的应用。摩擦搅拌焊 (FSW) 程序应基于 ISO 25239:2020 的要求。根据适用程序,FSW 分为双面单道焊、双面多道焊或带可调探头工具的单面焊接。《船舶建造与船舶材料及产品制造技术监督规范》第3篇“材料制造技术监督”4.1、4.4.7、4.5.10和7.6条规定了焊接操作人员持证上岗和FSW生产工艺认可的要求。2.10.10.1 FSW可适用于采用双面单道焊工艺、双面多道焊工艺或单面可调式探头工装的对接焊缝。FSW可采用单肩工装(可调式探头)或双肩工装(由不带力控制的固定长度探头和带力控制的可调长度探头分开)进行。2.10.10.2 对于无支撑面的 FSW 焊接接头,仅可采用双面单道焊或双面多道焊。2.10.20.3 FSW 焊接设备。焊接设备和 FSW 工具应能够产生符合规定验收水平要求的焊缝。焊接设备应保持良好状态,必要时应进行维修或调整,并应在公司的文件中说明。安装新设备或翻新设备后,应进行适当的测试以验证设备是否正常运行,并应在公司的文件中说明。应通过 FSW 设备进行参考参数的再现性测试,以证明焊接设备可以重复生产符合表 3.3.5 规定的验收水平的焊缝。为此,在以下情况下,应在通过焊接工艺认证的范围内并符合认证条件进行试件焊接和试件机械试验:
1. 宾夕法尼亚州立大学应用研究实验室,宾夕法尼亚州州立学院 2. 通用动力公司 NASSCO,加利福尼亚州圣地亚哥 3. 诺斯罗普·格鲁曼船舶系统公司,路易斯安那州新奥尔良 摘要 日趋成熟的高功率固体激光技术正激发人们对船舶制造活动中激光-GMA 混合焊接的兴趣。与传统连接技术相比,激光-GMA 混合焊接已证明能够减少薄钢对接焊缝的变形并提高管道焊缝的生产率,从而提高经济性。本文讨论了激光-GMA 混合焊接的潜在优势、解决变形和生产率的实验结果,并概述了最近在船舶厂安装的混合管道焊接系统。 关键词:焊接;激光束焊接;混合焊接;焊接变形;管道焊接 简介 自从研究人员首次设想将传统焊接电弧与激光束结合成一种混合工艺(Steen and Eboo 1979, Steen 1980),至今已有 25 年的历史,但直到最近,商用激光技术才发展到激光-GMA 混合焊接开始在工业应用中占据一席之地的地步。与短短几年前相比,激光器现在在工业上更加耐用且节能。与传统的基于电弧的连接工艺相比,激光束焊接 (LBW) 具有相对较高的焊接速度和较高的穿透力。不幸的是,
微生物的多重耐药性:综述 1 Wartu JR、*1 Butt AQ、1 Suleiman U.、1 Adeke M.、1 Tayaza FB、2 .Musa BJ 和 3 Baba, J. 1 尼日利亚卡杜纳州立大学微生物学系科学学院 2 尼日利亚博尔诺州迈杜古里 WHO 国家/ITD 实验室 UMTH 3 尼日利亚拉派伊易卜拉欣巴班吉达大学微生物学系 通讯作者的电子邮件地址:afia.butt8@gmail.com 电话:+2348130010675 摘要 多重耐药性 (MDR) 是指某些微生物能够抵抗多种抗菌剂的作用。MDR 包括对多种抗菌、抗真菌、抗病毒和抗寄生虫药物具有耐药性的微生物。某些微生物对某些通常会杀死它们或限制其生长的化学物质(药物)表现出类似的活性,这种现象称为抗生素耐药性(AMR)。多重耐药性可分为原发性耐药性、继发性耐药性、内在耐药性、广泛耐药性和临床耐药性。产生耐药性的抗生素包括β-内酰胺类、糖肽类、氨基糖苷类、磺胺类、头孢菌素类等。抗菌药物的作用方式包括细胞壁合成抑制剂、蛋白质合成抑制剂、关键代谢途径阻断剂、核酸合成抑制剂等。细菌经常产生耐药性,这可能是通过多种生化机制之一实现的,例如突变、破坏或失活以及细菌之间通过结合、转化和转导等多种方式进行的物质外排或遗传转移。 MDR原虫的作用方式是通过减少药物吸收、通过P-糖蛋白和其他运输ATP酶从寄生虫中输出药物等实现的。MDR蠕虫的作用方式是通过药物靶点的基因变化、药物运输的变化、药物代谢等实现的。抗病毒药物的作用方式通常靶向具有逆转录酶活性的病毒DNA聚合酶来抑制病毒复制。MDR真菌的作用方式是它们学会了修改抗真菌药物靶点或最常见的是增加进入药物的流出量。有多种方法可以逆转这种耐药性,例如在看完每个病人后洗手,公众应彻底清洗生水果和蔬菜以清除耐药细菌和可能的抗生素残留,避免滥用抗生素等。关键词:微生物,多重耐药性(MDR)引言多重耐药性(MDR)是某些微生物对多种抗菌药物表现出的耐药性。MDR微生物对公众健康的威胁最大,因为它们对多种抗生素有耐药性。其他 MDR 包括对多种抗真菌、抗病毒和抗寄生虫药物具有耐药性的药物(Magiorakos,2014 年;WHO,2018 年)。多种生化和生理机制都可能是耐药性的罪魁祸首(Liu 和 Pop,2009 年;WHO,2014 年)。在抗菌剂的具体情况下,导致耐药性出现和传播的过程的复杂性不容小觑,而缺乏这些主题的基本知识是主要原因之一
激光粉末床熔合 (L-PBF) 使 Glenn Research Copper 84 (GRCop-84) 能够通过增材制造 (AM) 制造出低混合电流驱动发射器组件,Glenn Research Copper 84 (GRCop-84) 是一种具有高抗拉强度和导电性的 Cr 2 Nb 沉淀硬化合金。由于构建体积限制,需要对通过激光焊接连接在一起的模块化段进行 AM 制造。开发了一种夹具系统,用于对准和压缩 0.5 毫米厚的对接焊缝,用氩气保护内表面,并防止组装过程中发生变形。外部夹具和夹板对准发射器部分,同时为脉冲 1070 nm 光纤激光器提供光束通道,而内部微型千斤顶在波导段内膨胀,消除连接部分之间的高度偏移并分配氩气保护气。传导模式焊接可防止形成锁孔和光束穿透波导内部,消除飞溅并产生光滑的底部焊道。顶面的表面粗糙度为 R a =2.34 µm,底面的表面粗糙度为 R a =3.17 µm。焊缝的平均 UTS 为 476 MPa,与 900°C 5 小时热处理后的 520 MPa UTS 相似。DOI:PACS 编号:I. 简介 Glenn Research Copper 84 (GRCop-84) [1], [2] 是一种铌铬化物 (Cr 2 Nb) 8 原子%Cr、4 原子%Nb [3] 沉淀硬化合金,适用于采用激光粉末床熔合 (L-PBF) 的增材制造 (AM) [4],[5],[6],[7],[8]。 L-PBF GRCop-84 的热导率在 260 W/m∙K [5] 到 300 W/m∙K [6] 之间(OFC 的 75%-84%),电阻率为 2.5 µΩ∙cm [9],为无氧铜 (OFC) 的 140%,屈服强度为 500 MPa,打印状态下的 UTS 为 740 MPa,伸长率为 20% [4],经 450°C 热处理 (HT) 后屈服强度增加到 810 MPa,UTS 为 970 MPa,伸长率为 9%,或经 900°C HT 后屈服强度降低到 300 MPa,UTS 为 520 MPa,伸长率为 26-37% [10]。与挤压或热等静压 (HIPing) [12] 粉末固结相比,L-PBF [11] 过程中细化沉淀物尺寸可提高强度,因为 2/3 的抗拉强度来自 Orowan 机制 [13]。高抗拉强度和稳定的沉淀物可用于火箭发动机 [5],[6],[7],[8] 或聚变反应堆 [14],[15] 的高温。高热导率和与 Nd:YAG 和光纤激光器的耦合不良 [16] 增加了传统铜合金的表面粗糙度和空隙率 [17]。GRCop-84 的 L-PBF 可实现全密度(> 99.9%)[4],平均垂直侧壁粗糙度为 Ra =3-4 μm [18]。通过机械抛光 [18] 或化学机械抛光 [20],[21],AM GRCop-84 的表面粗糙度[19]降低至 Ra <~0.3 μm,在 4.6 GHz 下实现低损耗。由于 14 vol% Cr 2 Nb [7],[11] 增强了 GRCop-84 的 AM,近红外激光的低温吸收得到了改善。
测试样品由一个管状标本组成,包括4英寸SCH 40无缝管(114.3mm O.D.x 6.3mm厚)长度为3米,HP/A截面系数为170m。标本均符合一个纵向关节,面向低温喷气 /喷气喷气火灾撞击位置和样品上的两个圆周关节符合测试标准,以促进在最繁重的条件下进行测试。The specimen was protected with “FireMaster Marine Plus Blanket” system (88mm nominal thickness) which comprised of the following construction composition: 38mm thick Morgan FireMaster Marine Plus Blanket (Density: 128 kg/m³) 0.049mm thick VaporStop™ Foil 12/25/12 50mm thick Morgan FireMaster Marine Plus Blanket (Density: 128 kg/m³)0.7毫米厚的316层不锈钢板外覆盖“ Fireemaster Marine Plus毯子”,使用125毫米中心的不锈钢线和“ Firemaster Marine Plus Plus毯子”之间的所有接头都安装在适当的位置。“ Firemaster Marine Plus毯子”的第一层和第二层在圆周和管状截面的相对侧也抵消了300毫米,以减少热传递。由Temati制造的一个“ Firemaster Marine Plus毯子”保护系统纳入了“ Firemaster Marine Plus毯”保护系统中,由Temati制造的0.049mm厚的“ VaporStop™Foil 12/25/12”组成,安装在第一个38mm厚的Morgan Firemaster Marine Plus Marine Plus Planset Planset(密度:128 KG/M M)上。 “ VaporStop™Foil 12/25/12”中的所有接头均由75mm重叠,并用Temati生产的“ VaporStop™Foil 12/25/12/12/12/12”密封。由Temati制造的一个“ Firemaster Marine Plus毯子”保护系统纳入了“ Firemaster Marine Plus毯”保护系统中,由Temati制造的0.049mm厚的“ VaporStop™Foil 12/25/12”组成,安装在第一个38mm厚的Morgan Firemaster Marine Plus Marine Plus Planset Planset(密度:128 KG/M M)上。“ VaporStop™Foil 12/25/12”中的所有接头均由75mm重叠,并用Temati生产的“ VaporStop™Foil 12/25/12/12/12/12”密封。0.7毫米厚的316层不锈钢板外覆层被75mm的纵向和圆周上覆盖,并在重叠的接头中掺入了由Dow Chemical Company Ltd.制造的“ Dowsil™Firestop 700密封剂”的应用。316不锈钢板外壁层被固定在100mm中心的不锈钢铆钉(Ø10mm)的位置,纵向固定在100mm的中心和88mm的中心。0.7毫米厚的316不锈钢板外覆层由不锈钢带(20mm宽)固定在适当的位置,并在200mm中心拧紧固定扣。完整性:60分钟的低温喷气释放暴露“ Firemaster Marine Plus毯子”保护系统在整整持续时间保持了低温喷气释放的时间,没有观察到的固定布置或开口。喷气火势暴露的65分钟“ Firemaster Marine Plus Glanset”保护系统一直存在于低温喷气释放曝光的整个持续时间,没有观察到固定布置或开口。
气候变化正对人类和生态系统构成风险,这些风险随着全球变暖的增加而加速(IPCC,2022a)。极端事件,例如2018年北半球的春季/夏季/夏季炎热的春季/夏季,无与伦比的北美西部热浪以及2021年的西欧洪水泛滥,其影响表明了未来的一些挑战(Apel等,2022; Vogel等人,Vogel等人,2019年)。人们对气候影响的复杂性以及气候危害和风险的化合物和级联性质的认识越来越多(Raymond,Horton等,2020; Simpson等,2021; Zscheischler,Martius,Martius,Westra,Bevacqua,&Raymond,2020)。在2022年夏天,复合极端的热量,干旱和火灾影响了欧洲,而早期发作在印度和巴基斯坦有毁灭性的序列。热量和干燥的极端情况之后是暴风雨和强烈的风暴,这导致了与热有关的人类死亡(Zachariah等,2022)。2022年破纪录的季风降雨导致巴基斯坦的滑坡和洪水,导致数千人丧生,受影响更多,以及对当地社区和基础设施的不可估计的损害(Zachariah等人,20222年)。这些极端气候中的许多都在2023年重复,在陆地上和海洋,野火,洪水和干旱上有热浪(Zachariah等,2023)。越来越多的事件归因于人为气候变化(Philip等,2020)。适应建模已告知决策,突出了最迫切需要行动的地方(Kondrup等,2022)。在这些突然的事件之外,由于陆地和海洋中的热量增加而引起的慢速发作变化(Lenoir等,2020; Smale等,2019)改变了我们的自然生态系统,并造成了局部灭绝以及重要的主食损失(Mbow等人,2019年)。冰川一直以一种在2000年影响径流和海平面上前所未有的速度撤退,海平面在1901年至2018年之间增长了约0.20 m(Fox-Kemper等人,2021年)。在过去的十年中,人们对气候变化和气候风险的了解迅速发展,案例研究越来越多,更长的时间序列分析,复杂的建模,实验和机械理解评估在替代情景下评估当前和预测的影响(Martínez-Solanas等人(Martínez-Solanas等)(Martínez-Solanas et al。 )。针对这些增加的威胁(Berrang-Ford等,2021)的响应措施已实施,并得到了增加的风险知识和影响力意识的支持(Archibald&Butt,2018)。这些进步允许从适应策略和计划转变为实施,在某些情况下,转变为监视适应性(Leiter,2021)。然而,气候变化影响的变化频率和幅度,许多事件的相互联系以及它们的级联后果越来越具有挑战性的适应计划和行动(Simpson等,2023),构成了日益增长的适应性差距,即,载重需求和适应性动作之间的差异(Garschagen等人)。关于适应反应的未来有效性的知识和不确定性不足,挑战了我们在温度升高下降低预计风险的能力(Berrang-Ford等,2021)。定期报告和监视适应性可以帮助克服不确定性,并在新知识中考虑到新知识。仍然,并非可以监控所有更改,并非所有需求都被考虑,并且通常不会内置长期监控
3。Bao,Y.,Huang,J.-Y. * 2024。 微泡对浸入葡萄番茄的浸润的影响。 食品化学,454,139813。 4。 Arbor,A.J.,Bhatt,P.,Simsek,H.,Brown,P.B.,Huang,J.Y。 * 2024。 生命周期评估基于微藻的废水处理用于虾循环水产养殖系统的环境可行性。 Bioresource Technology,399,130578。 5。 Arbor,A.J.,Chu,Y.-T.,Brown,P.B.,Huang,J.-Y. * 2024。 生命周期评估虾,红蛋白,米蒂纳和奥卡哈吉基的海洋水生生产。 环境管理杂志,353,120208。 6。 Bhatt,P.,Brown,P.B.,Huang,J.-Y. ,Hussain,A.S.,Liu,H.T.,Simsek,H。*2024。 藻类和土著细菌联盟在治疗虾废水中:可持续水产养殖系统资源回收的研究。 环境研究,250,118447。 7。 Aranda-Vega,A.,Bhatt,P.,Huang,J.-Y. ,Brown,P.,Bhasin,A.,Hussain,A.S。,Simsek,H。*2024。 水产养殖中溶解物质的生物降解性和生物利用度:土著细菌,蓝细菌和绿色微藻的性能。 环境污染,345,123468。 8。 Chen,C.-J.,Tsai,J.-H.,Lee,Y.-C。*,Huang,J.-Y. * 2024。 在烹饪过程中腌制的竹芽条及其二氧化硫去除的数学建模。 食品工程杂志,363,111782。 9。 * 2023。 10。Bao,Y.,Huang,J.-Y.* 2024。微泡对浸入葡萄番茄的浸润的影响。食品化学,454,139813。4。Arbor,A.J.,Bhatt,P.,Simsek,H.,Brown,P.B.,Huang,J.Y。 * 2024。 生命周期评估基于微藻的废水处理用于虾循环水产养殖系统的环境可行性。 Bioresource Technology,399,130578。 5。 Arbor,A.J.,Chu,Y.-T.,Brown,P.B.,Huang,J.-Y. * 2024。 生命周期评估虾,红蛋白,米蒂纳和奥卡哈吉基的海洋水生生产。 环境管理杂志,353,120208。 6。 Bhatt,P.,Brown,P.B.,Huang,J.-Y. ,Hussain,A.S.,Liu,H.T.,Simsek,H。*2024。 藻类和土著细菌联盟在治疗虾废水中:可持续水产养殖系统资源回收的研究。 环境研究,250,118447。 7。 Aranda-Vega,A.,Bhatt,P.,Huang,J.-Y. ,Brown,P.,Bhasin,A.,Hussain,A.S。,Simsek,H。*2024。 水产养殖中溶解物质的生物降解性和生物利用度:土著细菌,蓝细菌和绿色微藻的性能。 环境污染,345,123468。 8。 Chen,C.-J.,Tsai,J.-H.,Lee,Y.-C。*,Huang,J.-Y. * 2024。 在烹饪过程中腌制的竹芽条及其二氧化硫去除的数学建模。 食品工程杂志,363,111782。 9。 * 2023。 10。Arbor,A.J.,Bhatt,P.,Simsek,H.,Brown,P.B.,Huang,J.Y。* 2024。生命周期评估基于微藻的废水处理用于虾循环水产养殖系统的环境可行性。Bioresource Technology,399,130578。5。Arbor,A.J.,Chu,Y.-T.,Brown,P.B.,Huang,J.-Y. * 2024。 生命周期评估虾,红蛋白,米蒂纳和奥卡哈吉基的海洋水生生产。 环境管理杂志,353,120208。 6。 Bhatt,P.,Brown,P.B.,Huang,J.-Y. ,Hussain,A.S.,Liu,H.T.,Simsek,H。*2024。 藻类和土著细菌联盟在治疗虾废水中:可持续水产养殖系统资源回收的研究。 环境研究,250,118447。 7。 Aranda-Vega,A.,Bhatt,P.,Huang,J.-Y. ,Brown,P.,Bhasin,A.,Hussain,A.S。,Simsek,H。*2024。 水产养殖中溶解物质的生物降解性和生物利用度:土著细菌,蓝细菌和绿色微藻的性能。 环境污染,345,123468。 8。 Chen,C.-J.,Tsai,J.-H.,Lee,Y.-C。*,Huang,J.-Y. * 2024。 在烹饪过程中腌制的竹芽条及其二氧化硫去除的数学建模。 食品工程杂志,363,111782。 9。 * 2023。 10。Arbor,A.J.,Chu,Y.-T.,Brown,P.B.,Huang,J.-Y.* 2024。生命周期评估虾,红蛋白,米蒂纳和奥卡哈吉基的海洋水生生产。环境管理杂志,353,120208。6。Bhatt,P.,Brown,P.B.,Huang,J.-Y. ,Hussain,A.S.,Liu,H.T.,Simsek,H。*2024。 藻类和土著细菌联盟在治疗虾废水中:可持续水产养殖系统资源回收的研究。 环境研究,250,118447。 7。 Aranda-Vega,A.,Bhatt,P.,Huang,J.-Y. ,Brown,P.,Bhasin,A.,Hussain,A.S。,Simsek,H。*2024。 水产养殖中溶解物质的生物降解性和生物利用度:土著细菌,蓝细菌和绿色微藻的性能。 环境污染,345,123468。 8。 Chen,C.-J.,Tsai,J.-H.,Lee,Y.-C。*,Huang,J.-Y. * 2024。 在烹饪过程中腌制的竹芽条及其二氧化硫去除的数学建模。 食品工程杂志,363,111782。 9。 * 2023。 10。Bhatt,P.,Brown,P.B.,Huang,J.-Y.,Hussain,A.S.,Liu,H.T.,Simsek,H。*2024。藻类和土著细菌联盟在治疗虾废水中:可持续水产养殖系统资源回收的研究。环境研究,250,118447。7。Aranda-Vega,A.,Bhatt,P.,Huang,J.-Y. ,Brown,P.,Bhasin,A.,Hussain,A.S。,Simsek,H。*2024。 水产养殖中溶解物质的生物降解性和生物利用度:土著细菌,蓝细菌和绿色微藻的性能。 环境污染,345,123468。 8。 Chen,C.-J.,Tsai,J.-H.,Lee,Y.-C。*,Huang,J.-Y. * 2024。 在烹饪过程中腌制的竹芽条及其二氧化硫去除的数学建模。 食品工程杂志,363,111782。 9。 * 2023。 10。Aranda-Vega,A.,Bhatt,P.,Huang,J.-Y.,Brown,P.,Bhasin,A.,Hussain,A.S。,Simsek,H。*2024。水产养殖中溶解物质的生物降解性和生物利用度:土著细菌,蓝细菌和绿色微藻的性能。环境污染,345,123468。8。Chen,C.-J.,Tsai,J.-H.,Lee,Y.-C。*,Huang,J.-Y. * 2024。 在烹饪过程中腌制的竹芽条及其二氧化硫去除的数学建模。 食品工程杂志,363,111782。 9。 * 2023。 10。Chen,C.-J.,Tsai,J.-H.,Lee,Y.-C。*,Huang,J.-Y.* 2024。在烹饪过程中腌制的竹芽条及其二氧化硫去除的数学建模。食品工程杂志,363,111782。9。* 2023。10。Salazar Tijerino,M.B.,SanMartín-González,M.F.,Velasquez Domingo,J.A.,Huang,J.-Y. 生命周期评估精酿啤酒在不同尺度上以单位操作为基础进行评估。 可持续性,15,11416。 Pankaj,B.,Huang,J.-Y. ,Brown,P.,Shivaram,K.B.,Yakamercan,E.,Simsek,H。*2023。 使用响应表面方法论对水产养殖废水废水的电化学处理和参数优化。 环境污染,331,121864。 11。 Chung,M.M.S.,A.J.,Huang,J.Y。 * 2023。 微气泡辅助清洁过程,用于超滤系统及其环境性能。 由膜的邀请,13,424。 12。 Chung,M.M.S.,Bao,Y.,Velasquez Domingo,J.A.,Huang,J.Y。 * 2023。 使用微泡会通过油性废水污染的微滤膜清洁。 受到食物和生物产品加工的邀请,138,53-59。 13。 Chu,Y.-T.,Bao,Y.,Huang,J.-Y. ,Kim,H.-J.,Brown,P.B。 * 2023。 补充C解决了可持续海洋水培粮食生产系统中的pH难题。 食物,12,69。 14。 Al Eissa,A.,Chen,P.,Brown,P.B.,Huang,J.-Y. * 2022。 从生命周期的角度来看,饲料配方和农业系统对虾生产链环境性能的影响。 工业生态学杂志,26,2006-2019。 15。 Huang,J.-Y. *,Jones,O.G.,Zhang,B.Y。 2022。 16。Salazar Tijerino,M.B.,SanMartín-González,M.F.,Velasquez Domingo,J.A.,Huang,J.-Y.生命周期评估精酿啤酒在不同尺度上以单位操作为基础进行评估。可持续性,15,11416。Pankaj,B.,Huang,J.-Y. ,Brown,P.,Shivaram,K.B.,Yakamercan,E.,Simsek,H。*2023。 使用响应表面方法论对水产养殖废水废水的电化学处理和参数优化。 环境污染,331,121864。 11。 Chung,M.M.S.,A.J.,Huang,J.Y。 * 2023。 微气泡辅助清洁过程,用于超滤系统及其环境性能。 由膜的邀请,13,424。 12。 Chung,M.M.S.,Bao,Y.,Velasquez Domingo,J.A.,Huang,J.Y。 * 2023。 使用微泡会通过油性废水污染的微滤膜清洁。 受到食物和生物产品加工的邀请,138,53-59。 13。 Chu,Y.-T.,Bao,Y.,Huang,J.-Y. ,Kim,H.-J.,Brown,P.B。 * 2023。 补充C解决了可持续海洋水培粮食生产系统中的pH难题。 食物,12,69。 14。 Al Eissa,A.,Chen,P.,Brown,P.B.,Huang,J.-Y. * 2022。 从生命周期的角度来看,饲料配方和农业系统对虾生产链环境性能的影响。 工业生态学杂志,26,2006-2019。 15。 Huang,J.-Y. *,Jones,O.G.,Zhang,B.Y。 2022。 16。Pankaj,B.,Huang,J.-Y.,Brown,P.,Shivaram,K.B.,Yakamercan,E.,Simsek,H。*2023。使用响应表面方法论对水产养殖废水废水的电化学处理和参数优化。环境污染,331,121864。11。Chung,M.M.S.,A.J.,Huang,J.Y。 * 2023。 微气泡辅助清洁过程,用于超滤系统及其环境性能。 由膜的邀请,13,424。 12。 Chung,M.M.S.,Bao,Y.,Velasquez Domingo,J.A.,Huang,J.Y。 * 2023。 使用微泡会通过油性废水污染的微滤膜清洁。 受到食物和生物产品加工的邀请,138,53-59。 13。 Chu,Y.-T.,Bao,Y.,Huang,J.-Y. ,Kim,H.-J.,Brown,P.B。 * 2023。 补充C解决了可持续海洋水培粮食生产系统中的pH难题。 食物,12,69。 14。 Al Eissa,A.,Chen,P.,Brown,P.B.,Huang,J.-Y. * 2022。 从生命周期的角度来看,饲料配方和农业系统对虾生产链环境性能的影响。 工业生态学杂志,26,2006-2019。 15。 Huang,J.-Y. *,Jones,O.G.,Zhang,B.Y。 2022。 16。Chung,M.M.S.,A.J.,Huang,J.Y。* 2023。微气泡辅助清洁过程,用于超滤系统及其环境性能。由膜的邀请,13,424。12。Chung,M.M.S.,Bao,Y.,Velasquez Domingo,J.A.,Huang,J.Y。 * 2023。 使用微泡会通过油性废水污染的微滤膜清洁。 受到食物和生物产品加工的邀请,138,53-59。 13。 Chu,Y.-T.,Bao,Y.,Huang,J.-Y. ,Kim,H.-J.,Brown,P.B。 * 2023。 补充C解决了可持续海洋水培粮食生产系统中的pH难题。 食物,12,69。 14。 Al Eissa,A.,Chen,P.,Brown,P.B.,Huang,J.-Y. * 2022。 从生命周期的角度来看,饲料配方和农业系统对虾生产链环境性能的影响。 工业生态学杂志,26,2006-2019。 15。 Huang,J.-Y. *,Jones,O.G.,Zhang,B.Y。 2022。 16。Chung,M.M.S.,Bao,Y.,Velasquez Domingo,J.A.,Huang,J.Y。* 2023。使用微泡会通过油性废水污染的微滤膜清洁。受到食物和生物产品加工的邀请,138,53-59。13。Chu,Y.-T.,Bao,Y.,Huang,J.-Y. ,Kim,H.-J.,Brown,P.B。 * 2023。 补充C解决了可持续海洋水培粮食生产系统中的pH难题。 食物,12,69。 14。 Al Eissa,A.,Chen,P.,Brown,P.B.,Huang,J.-Y. * 2022。 从生命周期的角度来看,饲料配方和农业系统对虾生产链环境性能的影响。 工业生态学杂志,26,2006-2019。 15。 Huang,J.-Y. *,Jones,O.G.,Zhang,B.Y。 2022。 16。Chu,Y.-T.,Bao,Y.,Huang,J.-Y.,Kim,H.-J.,Brown,P.B。 * 2023。 补充C解决了可持续海洋水培粮食生产系统中的pH难题。 食物,12,69。 14。 Al Eissa,A.,Chen,P.,Brown,P.B.,Huang,J.-Y. * 2022。 从生命周期的角度来看,饲料配方和农业系统对虾生产链环境性能的影响。 工业生态学杂志,26,2006-2019。 15。 Huang,J.-Y. *,Jones,O.G.,Zhang,B.Y。 2022。 16。,Kim,H.-J.,Brown,P.B。* 2023。补充C解决了可持续海洋水培粮食生产系统中的pH难题。食物,12,69。14。Al Eissa,A.,Chen,P.,Brown,P.B.,Huang,J.-Y. * 2022。 从生命周期的角度来看,饲料配方和农业系统对虾生产链环境性能的影响。 工业生态学杂志,26,2006-2019。 15。 Huang,J.-Y. *,Jones,O.G.,Zhang,B.Y。 2022。 16。Al Eissa,A.,Chen,P.,Brown,P.B.,Huang,J.-Y.* 2022。从生命周期的角度来看,饲料配方和农业系统对虾生产链环境性能的影响。工业生态学杂志,26,2006-2019。15。Huang,J.-Y. *,Jones,O.G.,Zhang,B.Y。 2022。 16。Huang,J.-Y.*,Jones,O.G.,Zhang,B.Y。 2022。 16。*,Jones,O.G.,Zhang,B.Y。2022。16。在巴氏杀菌期间酪蛋白和角叉菜蛋白与乳清的相互作用及其对蛋白质沉积的影响。食物和生物生产加工,135,1-10。Chung,M.M.S.,Tsai,J.-H。; Lu,J.,Padilla Chevez,M.,Huang,J.-Y. * 2022。 微泡辅助清洁,以增强从传热表面清除牛奶沉积物。 ACS可持续化学与工程,10,8380-8387。 17。 Chung,M.M.S.,Bao,Y.,Zhang,B.Y.,Le,T.M.,Huang,J.Y。 * 2022。 食品加工环境可持续性的生命周期评估。 受到食品科学技术年度评论的邀请,13,217-237 18。 Akrama,S.*,Bao,Y.,Butt,M.S.,Shukat,R.,Afzal,A. * 2021。 含有的基于阿拉伯胶和麦芽糊精的微胶囊的制造和表征Chung,M.M.S.,Tsai,J.-H。; Lu,J.,Padilla Chevez,M.,Huang,J.-Y.* 2022。微泡辅助清洁,以增强从传热表面清除牛奶沉积物。ACS可持续化学与工程,10,8380-8387。17。Chung,M.M.S.,Bao,Y.,Zhang,B.Y.,Le,T.M.,Huang,J.Y。 * 2022。 食品加工环境可持续性的生命周期评估。 受到食品科学技术年度评论的邀请,13,217-237 18。 Akrama,S.*,Bao,Y.,Butt,M.S.,Shukat,R.,Afzal,A. * 2021。 含有的基于阿拉伯胶和麦芽糊精的微胶囊的制造和表征Chung,M.M.S.,Bao,Y.,Zhang,B.Y.,Le,T.M.,Huang,J.Y。* 2022。食品加工环境可持续性的生命周期评估。受到食品科学技术年度评论的邀请,13,217-237 18。Akrama,S.*,Bao,Y.,Butt,M.S.,Shukat,R.,Afzal,A.* 2021。含有