György Buzsáki 定义了海马尖波和 θ 和 γ 振荡的突触细胞机制。他的理论和创新方法使脑节律研究成为最活跃的研究领域之一。Buzsáki 的工作改变了我们对健康和患病大脑中信息编码(“神经语法”)的看法。他最具影响力的工作被称为记忆痕迹巩固的两阶段模型。在学习过程中,输入会暂时改变海马网络。反过来,时间压缩的标记事件会在睡眠期间重复数百次以巩固记忆。Buzsáki 一直强烈提倡研究自然状态下的自发性大脑活动,例如睡眠,并提倡将大脑与身体的相互作用作为认知的进化来源。他证明,在没有变化的环境信号的情况下,皮质电路会不断产生自组织的细胞组装序列,特定于回忆或动物的路线规划,这是认知功能的神经元组装基础的突破。
2022 A.A. Liu, S. Henin, S. Abbaspoor, A. Bragin, E. A. Buuffalo, J. S. Farrell, D. J.Foster, L. M. Frank, T. Gedankien, J. Gotman, J. Guidera, K. L. Houffman, J. Jacobs, M. J. Kahana, L. Li, Z. Liao , J. J. Lin, A. Losonczy, ..., 和 G. Buzsáki.关于检测海马尖波涟漪和与其他快速振荡区分开来的共识声明。自然通讯,13(1):1–14, 2022a
Belardinelli,P.,Biabani,M.,Blumberger,D.M.,Bortoletto,M.,Casarotto,S.,David,David,O.,Desideri,D.,Etkin,A.,Ferrarelli,F.,F. Kimiskidis,V。K.,Lioumis,P.,Miniussi,C.,…Ilmoniemi,R。J.(2019)。TMS中的可重复性 - 脑电图研究:呼吁数据共享,标准程序和有效的实验控制。大脑刺激,12,787 - 790。Burns,E.,Chipchase,L。S.,&Schabrun,S.M。(2016)。 响应急性肌肉疼痛的主要感觉和运动皮层功能:系统评价和荟萃分析。 欧洲痛苦杂志,20,1203 - 1213。https://doi.org/10.1002/ejp.859Buzsáki,G。,&Draguhn,&Draguhn,A。 (2004)。 皮质网中的神经元振荡。 Science(1979),304,1926 - 1929。https://doi.org/10.1126/science.1099745 Casali,A.G.,Casarotto,S.,Rosanova,M.,Mariotti,M。,M。和Massimini,M。(2010)。 一般指数以表征大脑皮层对TMS的电反应。 Neuroimage,49,1459 - 1468。 Casarotto,S.,Fecchio,M.,Rosanova,M.,Varone,G.,D'Ambrosio,S.,Sarasso,S.,Pigorini,A.,Russo,S.,Comanducci,A. RT-TEP工具:TMS- 的实时可视化Burns,E.,Chipchase,L。S.,&Schabrun,S.M。(2016)。响应急性肌肉疼痛的主要感觉和运动皮层功能:系统评价和荟萃分析。欧洲痛苦杂志,20,1203 - 1213。https://doi.org/10.1002/ejp.859Buzsáki,G。,&Draguhn,&Draguhn,A。(2004)。皮质网中的神经元振荡。Science(1979),304,1926 - 1929。https://doi.org/10.1126/science.1099745 Casali,A.G.,Casarotto,S.,Rosanova,M.,Mariotti,M。,M。和Massimini,M。(2010)。一般指数以表征大脑皮层对TMS的电反应。Neuroimage,49,1459 - 1468。Casarotto,S.,Fecchio,M.,Rosanova,M.,Varone,G.,D'Ambrosio,S.,Sarasso,S.,Pigorini,A.,Russo,S.,Comanducci,A.RT-TEP工具:TMS-
Computational models of rodent physiology implicate hippocampal theta as a key modulator of learning and memory ( Buzsáki and Moser, 2013 ; Lisman and Jensen, 2013 ), yet human hippocampal recordings have shown divergent theta corre- lates of memory formation.Herweg等。 (2020)表明,与记忆相关的宽带掩盖窄带theta的增加减少。 他们的调查还指出,theta振荡在分离记忆检索过程以及跨大脑区域的信号时最为突出。 我们通过分析以162例神经外科患者(n = 86位女性)捕获的人类海马记录来评估这些假设。 使用不规则的换采样自光谱分析(IRASA)将田间潜力的宽和窄带组件分开,我们表明(1)(1)Theta的宽带和窄带组件在成功编码过程中宽带信号降低,宽带信号降低,而窄带Theta在成功的编码过程中增加; (2)在成功召回之前,低频theta振荡在增加,而高频theta和α振荡却减少,掩盖了theta在整个频带上聚集时的正效应; (3)theta对编码和检索的记忆的影响在强调局部信号(双极性)的参考方案与全球汇总信号的参考方案之间没有差异(全脑平均值)。Herweg等。(2020)表明,与记忆相关的宽带掩盖窄带theta的增加减少。他们的调查还指出,theta振荡在分离记忆检索过程以及跨大脑区域的信号时最为突出。我们通过分析以162例神经外科患者(n = 86位女性)捕获的人类海马记录来评估这些假设。使用不规则的换采样自光谱分析(IRASA)将田间潜力的宽和窄带组件分开,我们表明(1)(1)Theta的宽带和窄带组件在成功编码过程中宽带信号降低,宽带信号降低,而窄带Theta在成功的编码过程中增加; (2)在成功召回之前,低频theta振荡在增加,而高频theta和α振荡却减少,掩盖了theta在整个频带上聚集时的正效应; (3)theta对编码和检索的记忆的影响在强调局部信号(双极性)的参考方案与全球汇总信号的参考方案之间没有差异(全脑平均值)。与计算模型一致,这些计算模型将海马theta在记忆中赋予了基本作用,我们对人类海马记录的大规模研究表明,在成功的记忆编码期间和自发召回先前研究的项目之前,有3 - 4 Hz Theta振荡可靠地增加。
我的观点,并提供了探索大脑-行为关系的替代策略。在过去的二十年里,也许出于类似的考虑,其他研究人员也研究了被解释项-被解释项问题(Krakauer 等人,2017 年;Brette,2018 年;Cisek,2019 年)。通过深入研究文献,我还意识到许多“我的想法”已经被许多科学家和哲学家考虑过,而且往往非常详细和深入,尽管这些想法尚未有效渗透到主流神经科学(Campbell,1993;Hendriks-Jansen,1996;Danziger,1997;Lakoff 和 Johnson,2003;Vanderwolf,2003;Noë,2006;Heinrich,2017;Gomez-Marin 和 Ghazanfar,2019)。18 年后,我重读了被拒绝的手稿,发现其中提出的许多想法已经成为“当代的”。因此,我做了一个实验。我重新提交了原始手稿(近二十年后!),现在的编辑很友好地同意将其送去审阅。值得注意的是,四位审稿人中有三位建议小幅修改后再发表,而第四位则建议大修改。他们正确地指出,将理论与方法对立起来并不是正确的解决方案。我完全同意审稿人的观点,即科学不仅仅是测量世界的艺术,尖端技术也不是神经科学的全部。我们必须小心,新方法不会简单地揭示越来越多的东西。观察需要组织成连贯的理论,才能取得进一步的进展。然而,当在一个主导模型中发现警告时,通过探索该模型应该解释的基质的机械细节,往往会出现替代解决方案。新方法为同样的问题提供了新的窗口,并可以促进其他解释。我在最近的一本书(《大脑从内而外》;Buzsáki,2019)中用了几页来讨论这个问题。我仍然认为,早在 2001 年,推广大规模记录是一个进步的想法,这种方法直到最近才开始流行起来。然而,我支持这样的观点,即技术不能成为该学科的救星。后一种观点是《大脑从内而外》的关键要素。几乎所有其他评论和建议的修改都是基于
自组装折纸神经探针,用于可扩展、多功能、三维神经接口 Dongxiao Yan 1*、Jose Roberto Lopez Ruiz 1*、Meng-Lin Hsieh 1、Daeho Jeong 1,2、Mihály Vöröslakos 3、Vittorino Lanzio 1、Elisa V. Warner 4、Eunah Ko 1、Yi Tian 1、Paras R. Patel 5、Hatem ElBidweihy 6、Connor S. Smith 6、Jae-Hyun Lee 2、Jinwoo Cheon 2、György Buzsáki 3、Euisik Yoon 1,2,5,7 ** 1 密歇根大学电气工程与计算机科学系,密歇根州安娜堡。 2 韩国首尔延世大学基础科学研究所 (IBS) 纳米医学中心和高级科学研究所纳米生物医学工程研究生课程 (Nano BME)。3 纽约大学朗格尼医学中心神经科学研究所,纽约,纽约州。4 密歇根大学计算医学和生物信息学系,密歇根州安娜堡。5 密歇根大学生物医学工程系,密歇根州安娜堡。6 美国海军学院电气与计算机工程系,马里兰州安纳波利斯。7 密歇根大学机械工程系,密歇根州安娜堡。* 同等贡献作者 ** 通讯作者摘要 柔性皮层内神经探针因其可减少组织反应而在高分辨率神经记录中延长寿命而备受关注。然而,传统的单片制造方法在以下方面遇到了重大挑战:(i) 扩大电生理记录位点的数量;(ii) 整合其他生理传感和调节;以及 (iii) 配置成三维 (3D) 形状以用于多面电极阵列。我们报告了一种创新的自组装技术,该技术允许实现灵活的折纸神经探针作为克服这些挑战的有效替代方案。通过使用磁场辅助混合自组装,可以将具有各种模态的多个探针以精确对准的方式堆叠在一起。使用这种方法,我们展示了一种多功能设备,该设备在单个柔性探针上集成了可扩展的高密度记录位点、多巴胺传感器和温度传感器。同时展示了大规模、高空间分辨率的电生理学以及局部温度感应和多巴胺浓度监测。通过使用最佳可折叠设计和毛细管力将平面探针缠绕在直径为 80~105 μm 的细纤维上,组装了高密度 3D 折纸探针。通过集成在 3D 折纸探针表面的神经元大小的微型 LED (μLED) 的照明可以实现定向光遗传学调控。我们可以识别探针周围 360° 的角度异质单元信号和神经连接。通过在行为小鼠中对 64 通道堆叠探针进行长达 140 天的长期记录来验证探针的寿命。借助所介绍的模块化、可定制的组装技术,我们展示了一种新颖且高度灵活的解决方案,以适应多功能集成、通道缩放和 3D 阵列配置。1. 简介增强记录能力和集成多模态是神经探针开发的两个基本需求。高通道数神经探针已证明其