摘要:储能使能源连续可用,可编程,并且功率水平与原始强度不同。这项研究研究了小规模压缩空气储能(CAES)系统的可行性。除了CAES系统外,还有两个TES(热量存储)系统用于恢复卡路里和杂物。Micro-CAES + TES系统设计用于配备具有标称功率为3 kW的光伏系统的单户住宅建筑。该系统被优化为典型家用光伏系统电池存储的潜在替代方法。使用ModeFrontier软件进行多目标优化分析。一旦确定了Micro-CAES + TES系统的最佳配置,它将与电化学存储系统进行比较,考虑到成本,耐用性和性能。CAE的效率(8.4%)几乎是市场上最有效的电池(70-90%)的效率的十分之一。其放电时间也非常短。表明,与当前市场上的电池相比,小型机械积累所提供的优势主要与该工艺的热浪费和估计的有用寿命有关。与电池相比,研究系统被证明是非竞争力的,因为它的效率最低和成本很高。
摘要:人们对全球温室气体排放的日益关注促使电力系统利用清洁高效的资源。与此同时,可再生能源在全球能源前景中发挥着至关重要的作用。然而,这些资源的随机性增加了对储能系统的需求。另一方面,由于多能源系统比单一能源系统效率更高,因此开发基于不同类型能源载体的此类系统对公用事业公司来说更具吸引力。因此,本文对多载体微电网 (MCMG) 在存在高效技术(包括压缩空气储能 (CAES) 和电转气 (P2G) 系统)的情况下的运行进行了多目标评估。该模型的目标是最大限度地降低运营成本和环境污染。除了充电和放电模式外,CAES 还具有简单循环模式操作,从而为系统提供更大的灵活性。此外,该模型还采用了需求响应程序来缓解峰值。所提出的系统参与电力和天然气市场以满足能源需求。采用加权和方法和基于模糊的决策来折中冲突目标函数的最优解。在样本系统上检验了多目标模型,并讨论了不同情况下的结果。结果表明,耦合 CAES 和 P2G 系统可减轻风电弃风,并将成本和污染分别降至 14.2% 和 9.6%。
摘要:随着电力行业重组的出现,电力系统中的常规单位承诺问题涉及传统的垂直整合系统结构中的操作成本的最小化,已转化为基于良好的单位承诺(PBUC)方法,该方法(GENT COMPACENT(GENCOS)执行可用的生产生产计划的计划,以实现目标均具有目标效果。通常,GENCO通过确定基于化石燃料的单位的承诺和调度来最大程度地提高自己的利润,以根据一组预测的价格和负载数据来解决PBUC问题,以解决日间市场(DAM)的参与。这项研究提出了一种方法,用于实现价格捕捞型Genco拥有压缩空气储能(CAES)和集中太阳能(CSP)单元的最佳发行曲线,此外还包括传统的热电厂。在提供的模型中考虑了对生成单元的各种技术和物理约束。所提出的框架在数学上被描述为一种混合企业线性编程(MILP)问题,该问题通过使用商业软件包来解决。同时,分析了几种情况,以评估CAE和CSP单位对PBUC问题最佳解决方案的影响。所达到的结果表明,将CAES和CSP单位纳入GENCO所面临的自我安排问题将在很大程度上增加其在大坝中的利益。
我们未来的能源系统将以间歇性可再生能源(风能、太阳能)占更大比例为特征,并辅以其他灵活的电力/热能生产形式。能源储存将在提供平衡综合系统中能源供需所需的灵活性方面发挥关键作用。特别是对于长期平衡需求,大规模、集中的地下能源储存是一种有吸引力且具有潜在成本效益的解决方案。它可以为电力、天然气和热能商品提供灵活的批量电力管理服务,并以战略能源储备、能源系统充足性和平衡解决方案的形式为社会提供基本服务,以应对不可避免的季节性变化和其他能源安全挑战。如今,许多这些服务都是通过天然气储存提供的,天然气已经大量(约 130 亿立方米,或 130TWh)安全地储存在荷兰地下的盐洞和枯竭的气田中,以及欧洲许多其他国家的地下盐洞和枯竭的气田中,以平衡日常供需并确保寒冷冬季的供应。然而,随着天然气在荷兰能源系统中的作用逐渐减弱,对以不同形式大规模储存能源的需求日益增长。在本报告中,我们重点介绍了两种地下储能的替代形式:盐穴中的压缩空气储能 (CAES) 和盐穴和枯竭气田中的地下储氢 (UHS)。最近发布的估计 (Van Gessel 等人,2018 年;Gasunie 和 TenneT,2018 年;Berenschot 和 Kalavasta,2020 年) 表明,2050 年荷兰所需的储氢容量范围从低端的个位数 (十亿立方米)(正常天气年份)到高端的数十亿立方米(极端天气年份),可能需要储存和/或转换的剩余电力可能在 20-140TWh 之间。尽管他们明确表示 CAES 和 UHS 等大规模储能技术需要做好部署准备,但它们的技术经济可行性尚未得到证实。因此,在本报告中,我们回顾了这些技术的概念和部署状况,评估了它们的技术性能,并解决了有关这些技术的技术经济可行性的几个悬而未决的问题。压缩空气储能 CAES 是一种电力存储技术。充电时,电能通过压缩空气以机械形式存储,并存储在(通常)盐穴中。放电时,利用压缩空气驱动涡轮膨胀机/涡轮机来再生电能。有两种主要的技术概念,它们主要在如何处理压缩和膨胀过程中空气的温度变化方面有所不同:非绝热 CAES(D-CAES)和高级绝热 CAES(AA-CAES)。在 D-CAES 系统中,压缩空气时产生的热量不会被储存。因此,在发电时必须燃烧外部燃料以加热空气,然后才能驱动涡轮机。传统上使用的是天然气,但其燃烧会导致二氧化碳排放。氢气正成为一种替代品,特别是因为氢气燃烧不会排放二氧化碳,而且可以用可再生电力生产(也不会排放二氧化碳)。全球有两座 CAES 工厂已投入商业运营多年,其中一座位于德国
Corre Energy 是一家长时储能开发商,其技术基于成熟的压缩空气储能技术,并具备处理储存氢气的能力。Corre 是该技术的欧洲领导者,在可再生能源渗透率不断提高、对此类高容量和长时储能产生需求的当下,为投资者提供了先发优势。 CAES 在欧洲的机会很大 压缩空气储能 (CAES) 已经是全球部署最广泛的长时储能技术之一,但欧洲在部署方面落后于中国和美国,尽管欧洲拥有适合开发的大型盐穴地质。它是唯一一项在规模和持续时间上挑战抽水蓄能水力发电的技术,并且在成本上与其他长时储能技术具有竞争力。 Corre 是领先的开发商 Corre 是欧洲领先的 CAES 储能开发商,预计到 2030 年将投入 3,200MW 的储能系统。该公司已经建立了强大的合作伙伴集团,以完成这些项目,包括洞穴开发商和系统提供商。Corre 还与金融合作伙伴 Infracapital 和 Fondo Italiano Per L'Efficienza Energetica 建立了牢固的关系。项目取得切实进展 Corre 最近的中期业绩显示,公司正与投资级合作伙伴共同制定其在荷兰的首个 CAES 项目的承购提案。其在丹麦的第二个项目现已与 Gas Storage Denmark 签署了关于目标储存洞穴的意向书,并且还签署了关于在德国的洞穴期权协议的谅解备忘录。 中心案估值为每股 3.6 欧元 我们对公司的估值为每股 3.6 欧元,假设仅开发四个独家项目。该估值面临的主要风险是项目开发延迟、融资不确定性、政策不确定性和新的竞争技术。我们认为合作伙伴基础和多样化的机会可以防范这些风险。
摘要。在当前的能源背景下,间歇性和非调度性可再生能源,如风能和太阳能光伏(发电量不一定与需求相对应),需要灵活的解决方案来储存能源。储能系统 (ESS) 能够平衡可变可再生能源 (VRE) 的间歇性和不稳定发电量。ESS 提供辅助服务,例如:电网频率、一次和电压控制。为了实现电力系统控制,ESS 可以在几秒钟内切换到不同的运行模式。很多时候,ESS 会对景观和社会产生环境影响。为了解决这个问题,废弃的地下空间,如已关闭的矿井,可以用作储能厂的地下水库。本文对地下抽水蓄能水电 (UPSH)、压缩空气储能 (CAES) 和废弃矿井中悬挂重物的悬挂重物重力储能 (SWGES) 进行了比较分析。抽水蓄能水电 (PSH) 是最成熟的概念,占全球散装储能容量的 99%。结果表明,在 UPSH 和 CAES 电厂中,储存的能量主要取决于地下储层容量,而在 SWGES 电厂中,储存的能量取决于矿井深度和质量。SWGES 电厂储存的能量(3.81 MWh 循环 -1,可用深度 600 米,假设悬浮重量为 3,000 吨)远低于 UPSH 和 CAES 电厂。
ESS可以帮助解决英国的网格灵活性问题,这是由于依赖天然气的峰值能力而引起的。但是,泵送的水电储存(PHS)和电池能量存储系统(BESS)预计将来将发挥更重要的作用。贝斯部署尤其有望大大增加,贝丝将在2050年之前统治储能景观。长期存储需求,每周,每月甚至季节性持续时间,预计将通过绿色氢和PHS的结合来满足。基于锂的电池预计将是规模经济和电动汽车增长(EV)驱动的固定能量存储的主要技术。尽管PHS和压缩空气储能(CAES)具有较长的交货时间和地理限制之类的局限性,但CAES为降低成本提供了机会,液体空气储能(LAES)提供了更广泛的部署可能性。
摘要:风能的随机性是造成风电场能量利用率低的重要原因,采用压缩空气储能系统(CAES)可以在提高风能利用率的同时降低风力发电的随机性。然而CAES系统容量配置不合理,导致资金投入高、回收期长。为提高储能的经济效益,本文研究风能不确定条件下压缩空气储能系统的容量配置。首先利用历史数据获取风电发电的典型小时功率分布,考虑用户负荷需求、电网分时电价、系统投资成本、缺电成本、售电收益等因素。然后以CAES系统充放电功率和储气容量为约束,以投资回报率最大和储气罐容积最小为目标,建立模型,采用NSGA-II和TOPSIS优选方法对问题进行求解。最后利用该模型对某电力运行案例进行优化,结果表明:在某工厂每小时负荷用电需求为3.2 MW的情况下,风电场每天需维持4台风电机组运行,采用额定功率1 MW、额定容量7 MW的压缩空气储能系统可保证最佳项目效益,在此模式下每年可减少弃风电量1.24×10 3 MWh,运行周期内通过增加储能可减少2.6×10 4 kg碳排放,投资回收期仅为4.8年。
摘要-由于储能技术的发展,不同的储能方式对电力系统的影响变得越来越重要。本文优化了基于风能的多能源系统 (MES) 的随机调度,并结合电力和热能需求响应程序以及三模式 CAES (TM-CAES) 单元评估了所提出的系统运行情况。所提出的风电一体化 MES 由 TM-CAES 单元、电锅炉单元和储热系统组成,可以与当地热网交换热能并与当地电网交换电能。使用蒙特卡罗模拟方法将电力和热能需求以及风电场发电建模为基于场景的随机问题。然后,通过将适当的场景简化算法应用于初始场景来减少计算负担。最后,将提出的方法应用于案例研究,以评估所提出方法的有效性和适用性。
摘要。在大规模可再生能源存储的可能解决方案中,电力对气(P2G)和压缩空气储能(CAES)似乎非常有前途。在这项工作中,P2G和基于水下存储量的创新类型的CAE(UW-CAE)可以从技术经济的角度比较,当与48 MW E海上风力发电厂结合使用时,可以选择适当的位置,以适合高生产率和有利的海底深度。采用优化模型来研究系统设计和操作,最大程度地提高寿命的盈利能力,同时考虑差异安装和运营成本,产品的市场价值(即氢气和电力)以及技术约束。在当前的经济和技术情况下,所得的P2G系统具有标称功率,相当于风停止容量的10%,氢存储缓冲液较小。另一方面,UWCAES的压缩机和涡轮机的标称功率接近全风电场,需要大的水下压缩空气储罐。这两种选择都显着影响风电厂的管理,但两个系统的最有益应用是不同的:P2G导致紧凑而柔性的单元,而UW-CAES能够利用更高的平均转换效率(约80%的圆旅)来利用更高的安装功率和投资成本。无论如何,考虑到当前的框架,最终的经济学仍然不足,但是它们的竞争力可以改善与下一未来能源市场的预期发展相吻合。