该项目旨在建立环境合理的构建和拆除垃圾(CDW)管理指南,CDW生产的可回收材料的质量标准,使用CDW生产的可回收材料的新技术的开发,并提出旨在促进越南CDW再生的战略商业模型。该项目不仅增强了越南的学生的知识和技能,而且还提高了其他为该项目做出贡献的发展中国家的知识和技能。从越南的组织中受益于创新,高级技术的转移和人力资源开发,是河内土木工程大学(HUCE),河内科学与环境战略与环境战略与政策研究所,河内科学与环境战略与政策研究所,科学技术大学,自然资源和环境和环境和环境和地区河内建筑部。
我们在单轴电荷密度波(CDW)的基端状态下,在强烈的外部磁磁场垂直于导电平面的情况下,在单轴电荷密度波(CDW)的基底状态下,在单轴电荷密度波(CDW)的基础状态下,在单轴电荷密度波(CDW)的基础状态下报告了磁性电导率量σ。单轴电荷否定波将最初闭合的费米表面重建为开放的表面,并伴随着在费米能量周围状态的电子密度中形成伪间隙。在量子密度矩阵和半经典磁分解方法中计算了磁性张量,该方法着重于主,所谓的“经典”对磁磁性的贡献,这是通过磁故障对磁导体的贡献,忽略了较高的校正。In the presence of magnetic breakdown, in spite of open Fermi surface configuration, all classical magnetoconductivity compo- nents, the one along the CDW apex σ xx ∼ B − 2 , perpendicular to the CDW apex σ yy ∼ const, as well as the Hall conductivity σ xy ∼ B − 1 , undergo strong quantum oscillations vs. inverse magnetic field.这些振荡并不是仅仅是添加剂校正,而是改变经典结果成为其固有的部分,将其转变为本质上是非古典的。
该研究团队使用扫描隧道显微镜(STM)在NBSE 2中捕获了CDW的高分辨率图像,该扫描隧道显微镜(STM)能够以原子级分辨率对结晶表面进行成像。随后,团队成功地清楚地对以星形和三叶草形CDW结构为特征的域的分布模式通过数值确定相对于观察到的原子晶格的位移而进行了。
功率为 2.64 nW/Hz 1/2,在 0.3 THz 时超快响应时间为 2.5 μs。热介导的 CDW 跃迁允许对设备功能进行微调,在单一架构中集成传感、逻辑和内存。这种方法摆脱了传统的冯·诺依曼架构,通过局部的传感器内计算解决了能源效率和延迟瓶颈,从而实现了范式转变。此外,我们的研究结果深入了解了 CDW 系统中对称性破坏机制、量子相干性和非平衡动力学的相互作用,阐明了驱动设备性能的潜在物理原理。多场控制下电阻状态的长期保持和强大的相位稳定性证明了基于 CDW 的设备用于安全通信、加密处理和可编程光电逻辑的可行性。这些结果强调了 CDW 驱动的热电逻辑系统在推进太赫兹光电网络方面的变革潜力,同时拓宽了对凝聚态物理学中相关量子现象的理解。
堆叠自由度是调整材料特性的关键因素,并且已在分层材料中进行了广泛的研究。最近发现Kagome超导体CSV 3 SB 5在T CDW〜94 K下方显示出三维CDW相位。尽管对内平面调制进行了彻底的研究,但平面外调制仍然模棱两可。在这里,我们的极化和温度依赖性拉曼测量结果揭示了C 6旋转对称性的破坏,并且在大约120°的三个不同域的存在下,彼此之间存在三个不同的域。观察结果表明,CDW相可以自然解释为2C交错阶相,相邻层显示相对π相移。此外,我们在大约65 K处发现了一阶结构相变,这是由于堆叠断层而引起的堆叠顺序diSorder相变,并受到CS相关唱片模式的热磁滞行为的支持。我们的发现突出了CSV 3 SB 5中堆叠自由度的重要性,并提供了结构见解,以理解超导性和CDW之间的纠缠。
具有kagome晶格结构的材料由于其独特的电子义务而引起了强烈的关注,从而探索了新的和异国情调的量子现象。[1,2]在新发现的Kagome金属中,V 3 SB 5(a = k,rb,cs)表现出丰富的量子现象,例如非平凡的拓扑带,费米能量附近的范·霍夫(Van Hove)奇异性,高度不寻常的超导性超导性和电荷密度波(CDWS)。[3 - 9]这些发现刺激了这一领域的一波研究。我们的研究重点是CSV 3 SB 5,这是A V 3 SB 5类的特定成员,该类别对其新型电子特性引起了极大的关注。CSV 3 SB 5(空间群P 6 / mmm)的结构由剖腹层插入的V – SB层。在V – SB层中,钒阳离子由SB Octahedra协调,形成了二维Kagome晶格(图1(a))。[ 3 ] CsV 3 Sb 5 undergoes a CDW transition at T CDW ≈ 94 K, and enters into a superconducting ground state at T c ≈ 3 K. [ 4 ] Various experimental studies revealed long- range CDW order [ 10 – 12 ] and suggested that the unconven- tional CDW may be related to van Hove filling, in addition to electron–phonon coupling.此外,在该系统中已经报道了电子列表,并建议CDW高度不寻常。[13]尽管t c相对较低,但CSV 3 SB 5中的超导状态可能非常不寻常。例如,理论和运输测量表明
CDW在我们的财政年度2023年投资于规范性碳核算软件。采用行业领先的平台具有提高的准确性,透明度和数据分析,从而为发射台提供了对排放和缓解计划的影响的更深入了解。在2023年的净排放中,与CDW的2020年基线相比,净排放量增加,这是由于业务绩效的显着提高,返回办公室的数量增加了COVID19大流行,并且对范围2排放的洞察力更大。然而,废物管理流程和向垃圾填埋场的零废物进行了重大改进,以及通过进一步嵌入技术的商务旅行的变化已经显着减少了排放。CDW持续100%采用可再生天然气和电力计划,以及我们机队中混合电动汽车的加速过渡,增加了对排放量的下降压力。
要了解电荷密度波(CDW)阶段内基于V的Kagome金属中的多阶段过渡,我们专注于“混合型”费米表面的影响,因为它在CDW状态下在“纯型” Fermi表面上完好无损。在混合型费米表面,中等自旋相关性上发展,我们揭示了均匀(q = 0)键顺序是由paramagnon干扰机制引起的,这是由Aslamazov-larkin顶点校正描述的。主要的解决方案是E 2 G-对称性命名秩序,其中可以任意旋转主管。另外,我们获得了A 1 g式对称顺序,该顺序导致晶格常数的变化而没有对称性破裂。可以通过弹性测量值观察到q = 0处的预测的E 2 g和1 g通道的流动。这些结果可用于了解2×2 CDW相内的多阶段过渡。目前的理论具有一般性的意义,因为各种Kagome晶格系统中存在混合型费米表面(带有多边形货车爱好奇异性)。
临床数据仓库 (CDW) 包含数百万患者的医疗数据,为开发计算工具提供了绝佳机会。MRI 对图像采集过程中的患者运动特别敏感,这将导致重建图像中出现伪影(模糊、重影和振铃)。因此,CDW 中的大量 MRI 因被这些伪影破坏而无法使用。由于扫描次数太多,无法手动检测,因此有必要开发一种工具来自动排除带有运动的图像,以充分利用 CDW。在本文中,我们提出了一种 CNN 来自动检测 3D T1 加权脑部 MRI 中的运动。我们的迁移学习方法基于合成运动生成,包括两个步骤:使用合成运动对研究数据进行预训练,然后进行微调步骤,将我们的预训练模型推广到临床数据,依靠 5500 张图像的手动标记。目标是 (1) 能够排除具有严重运动的图像,(2) 检测轻微的运动伪影。我们的方法在第一个目标上实现了出色的准确率,平衡准确率几乎与注释者的准确率相似(平衡准确率 > 80%)。然而,对于第二个目标,其表现较弱,远低于人类评分者。总体而言,我们的框架将有助于在医学成像中利用 CDW,并强调对基于研究数据训练的模型进行临床验证的重要性。
临床数据仓库 (CDW) 包含数百万患者的医疗数据,为开发计算工具提供了绝佳的机会。磁共振图像 (MRI) 对图像采集过程中的患者运动特别敏感,这将导致重建图像中出现伪影(模糊、重影和振铃)。因此,CDW 中的大量 MRI 被这些伪影破坏,可能无法使用。由于扫描次数太多,无法手动检测它们,因此有必要开发工具来自动排除(或至少识别)带有运动的图像,以充分利用 CDW。在本文中,我们提出了一种从研究到临床数据的新型迁移学习方法,用于自动检测 3D T1 加权脑 MRI 中的运动。该方法包括两个步骤:使用合成运动对研究数据进行预训练,然后进行微调步骤,以将我们的预训练模型推广到临床数据,这依赖于 4045 张图像的标记。目标是 (1) 能够排除具有剧烈运动的图像,(2) 检测轻微的运动伪影。我们的方法在第一个目标上实现了出色的准确率,平衡准确率几乎与注释者的准确率相似(平衡准确率 > 80 %)。然而,对于第二个目标,其表现较弱,远低于人类评分者。总体而言,我们的框架将有助于在医学成像中利用 CDW,并强调对基于研究数据训练的模型进行临床验证的重要性。