为了比较不同尺寸系统中的闪光,应该使用密集型数量,即对系统体积不敏感的数量。通过测量分布的累积κi分裂(最高第四阶)来构建此类数量,其中i是累积的。在第二,第三和第四阶累积量密集量定义为:κ2 /κ1,κ3 /κ2和κ4 /κ2。图1显示了在150 /158 A GEV / c时净电荷的第三和第四阶累积比的系统尺寸依赖性。测量的数据与EPOS 1.99模型[4,5]预测一致。对相同数量的系统尺寸依赖性的更详细检查,用于负电荷的HADRON(图2)显示非常不同的系统尺寸依赖性。均未通过EPOS 1.99模型再现了测得的H +和H-。这种分歧表明我们不完全理解如何诱发爆发的基础物理学。因此,需要更详细的研究。在搜索CP时,可能的工具是质子插入性,该工具应遵循CP附近的幂律闪光。可以通过研究具有细胞大小的2 ND阶乘力矩f 2(m)的缩放行为,或等效地,在(p x,p y)中的质子中的细胞数量(参见参考文献。[6,7,8])。对于实验数据,必须通过混合事件减去非关键背景。减法后,第二个阶乘矩δf2(m)应根据M >> 1的幂律缩放,并导致关键
为了比较不同尺寸系统中的涨落,应该使用强度量,即对系统体积不敏感的量。此类量通过除以测量分布的累积量 κ i(最高为四阶)得出,其中 i 是累积量的阶数。对于二阶、三阶和四阶累积量,强度量定义为:κ 2 /κ 1、κ 3 /κ 2 和 κ 4 /κ 2。图 1 显示了 150 / 158 A GeV / c 时净电荷三阶和四阶累积量比的系统尺寸依赖性。测量数据与 EPOS 1.99 模型 [4, 5] 的预测一致。对带负电和带正电强子的相同量对系统尺寸依赖性的更详细检查(图 2)表明系统尺寸依赖性非常不同。此外,EPOS 1.99 模型无法重现任何测量到的 h + 和 h − 量。这种不一致表明我们还没有完全理解涨落是如何产生的底层物理原理。因此,需要进行更详细的研究。在寻找 CP 时,一个可能的工具是质子间歇性,它应该遵循 CP 附近的幂律涨落。可以通过研究二阶阶乘矩 F 2 ( M ) 随胞元大小或等效地随中速质子 (px, py) 空间中胞元数量的缩放行为来检查(参见参考文献 [6, 7, 8])。对于实验数据,必须用混合事件减去非临界背景。减去后,二阶阶乘矩 Δ F 2 ( M ) 应该根据 M >> 1 的幂律缩放,得到临界
在内部开发的 CERN 辐射监测电子系统 (CROME) 框架内,需要进行可靠性分析以确保符合有关安全完整性的法律要求,安全完整性定义为系统安全仪表功能 (SIF) 的安全完整性等级 (SIL) 2。鉴于对 CROME 系统可靠性的高度期望,其开发过程由根据 IEC 61508 标准进行的广泛可靠性研究支持。本文介绍了硬件安全完整性的验证,并以 CROME 系统为例介绍一种可能的方法。本文介绍了验证硬件安全完整性所需的各个步骤,包括计算每小时危险故障概率 (PFH) 和通过计算安全故障分数 (SFF) 以及考虑系统的硬件容错 (HFT) 来评估架构约束。根据所提出的方法,这些计算基于 FIDES 标准的故障率预测、故障模式、影响和诊断分析 (FMEDA) 和故障树分析 (FTA)。最终 CROME 系统认证原型 (PQ) 的结果表明,硬件安全完整性符合 SIL 2 要求。关键词:符合 IEC 61508 的安全系统、硬件安全完整性验证、SIL、SIF、SIS、FMEDA、FTA、架构约束、SFF、HFT、PFH 计算。
为了比较不同尺寸系统中的闪光,应该使用密集型数量,即对系统体积不敏感的数量。通过测量分布的累积κi分裂(最高第四阶)来构建此类数量,其中i是累积的。在第二,第三和第四阶累积量密集量定义为:κ2 /κ1,κ3 /κ2和κ4 /κ2。图1显示了在150 /158 A GEV / c时净电荷的第三和第四阶累积比的系统尺寸依赖性。测量的数据与EPOS 1.99模型[4,5]预测一致。对相同数量的系统尺寸依赖性的更详细检查,用于负电荷的HADRON(图2)显示非常不同的系统尺寸依赖性。均未通过EPOS 1.99模型再现了测得的H +和H-。这种分歧表明我们不完全理解如何诱发爆发的基础物理学。因此,需要更详细的研究。在搜索CP时,可能的工具是质子插入性,该工具应遵循CP附近的幂律闪光。可以通过研究具有细胞大小的2 ND阶乘力矩f 2(m)的缩放行为,或等效地,在(p x,p y)中的质子中的细胞数量(参见参考文献。[6,7,8])。对于实验数据,必须通过混合事件减去非关键背景。减法后,第二个阶乘矩δf2(m)应根据M >> 1的幂律缩放,并导致关键
All credits to the respective projects and authors of shown images and illustrations References and sources: CERN Document Server, EP-ESE Seminars, ACES-2018 Workshop, ATLAS Collaboration, CMS Collaboration, ALICE Collaboration, LHCb Collaboration Images copyright by CERN or by CERN for the benefit of ATLAS, CMS, ALICE, LHCb Collaborations if not differently stated
CERN OpenLab是一种独特的公私合作伙伴关系,可加快为全球LHC社区和更广泛的科学研究的裁缝解决方案的开发。通过CERN OpenLab,CERN与领先的ICT公司和研究机构合作。 参见。 CERN OpenLAB年度报告2018:https://zenodo.org/record/3234404#xi70q2hkguu eu项目:www.cern.cern.ch/information-technology/about/about/about/projects/eu/eu/eu/eu/eu/eu/eu/eu/eu/eu-fund-prodeque---- Technology.web.cern.ch/about/projects/eu/current/projects cf. 年度IT部门小组和活动报告中的专用部分:https://cds.cern.ch/record/2631468 UNOSAT:https://unitar.org/unosat/ cern强大的IT IT IT基础架构对领域以外的领域有用。 已有15年了,UnoSat一直将实验室的计算中心基础设施用于其人道主义工作。 了解更多信息:http://home.cern/about/updates/2016/10/unosat-15-alls-humanitarian-mapping http://cds.cern.ch/record/2223516?通过CERN OpenLab,CERN与领先的ICT公司和研究机构合作。参见。CERN OpenLAB年度报告2018:https://zenodo.org/record/3234404#xi70q2hkguu eu项目:www.cern.cern.ch/information-technology/about/about/about/projects/eu/eu/eu/eu/eu/eu/eu/eu/eu/eu-fund-prodeque---- Technology.web.cern.ch/about/projects/eu/current/projects cf.年度IT部门小组和活动报告中的专用部分:https://cds.cern.ch/record/2631468 UNOSAT:https://unitar.org/unosat/ cern强大的IT IT IT基础架构对领域以外的领域有用。已有15年了,UnoSat一直将实验室的计算中心基础设施用于其人道主义工作。了解更多信息:http://home.cern/about/updates/2016/10/unosat-15-alls-humanitarian-mapping http://cds.cern.ch/record/2223516?
与世界一流研究相关的效益和影响 CERN 的研究在粒子物理学方面取得了重要进展,包括一系列具有里程碑意义的发现,例如希格斯玻色子——40 多年前假设的粒子物理学标准模型中缺失的最后一块。CERN 取得的其他重大突破包括发现弱中性流(1970 年代)和电弱(W 和 Z)规范玻色子(1980 年代)、测量轻子代数(1990 年代)、观察到粲夸克中的 CP 破坏(2019 年)以及(迄今为止)显示不存在超对称性的零结果。这些进步支持了进一步的科学进步,并有可能在长期内产生非常重大的、更广泛的社会影响。英国科学家也在此研究的基础上支持他们的进一步进步和成就。仅在过去 10 年中,就有超过 20,000 篇英国科学论文引用了 CERN 文章,其中包括许多英国最具影响力的物理学论文(其中 25% 的英国论文是全球范围内其领域内被引用次数最多的 10%)。
欧洲粒子物理战略的更新从根本上来说是一个开放、包容和科学驱动的过程,于 2018 年 9 月启动,当时欧洲核子研究中心理事会成立了独立的欧洲战略小组 (ESG) 来协调这一进程。在真正的合作倡议中,到 2018 年底,粒子物理学界已提交了 160 份提案,涵盖了全球粒子物理学的概况和相关领域的发展。2019 年 5 月,该界齐聚西班牙格拉纳达举行的一次公开研讨会,讨论了所提交提案的潜在优点和挑战。这些意见被提炼成 250 页的《物理学简报》,这是一份客观的科学摘要,于 2019 年 9 月出版,为随后的讨论奠定了基础。
这个问题的问题探讨了LHC在高能量边界(P40)的前10年物理学的巨大影响,并在此期间听到了那些处于机器敏锐的末端的人和实验(P33)的声音。LHC的故事还有很长的路要走,它与Ligo有相似之处,并寻求检测引力波。在1987年,当CERN理事会成立的计划小组建议使用高幼体质子 - 普罗顿对撞机,质量为13-15 TEV时,Ligo刚刚成立为Caltech/MIT项目。LIGO的现场建设始于1994年,即LHC批准的那一年,二十年后,这两个基础设施使历史悠久,直接发现了Higgs Boson和重力波。现在,随着高光度LHC的升级和增强的高级LIGO“ Plus”,物理学家正在争夺建立Higgs工厂和第三代重力波干涉仪,以全面利用这些层状发现。对前者的计划一直是欧洲战略更新的讨论中心,即将得出结论,而正如我们在P53上报告的,欧洲的两个地点正在竞标主持爱因斯坦望远镜(ET)。干涉仪可能比对船员便宜,但是,正如前LIGO总监Barry Barish在我们对P61的采访中所解释的那样,像ET这样的项目需要专业管理,艰难的决策和健康的风险需求。
摘要 智能机器人系统对于工业、核电站以及一般恶劣环境(例如欧洲核子研究中心 (CERN) 粒子加速器综合体和实验)来说正变得至关重要。为了提高安全性和机器可用性,机器人可以执行重复、计划外和危险的任务,而人类要么选择避免这些任务,要么由于危险、尺寸限制或极端环境而无法执行这些任务。本文介绍了一种用于在恶劣环境中进行自主检查和监督远程操作的新型机器人框架。所提出的框架涵盖了机器人干预的所有方面,从规格和操作员培训、根据可能的放射性污染风险选择机器人及其材料,到干预的实现,包括程序和恢复场景。本文提出的机器人解决方案能够自主导航,以安全的方式检查未知环境。实施了一种新的实时控制系统,以确保快速响应环境变化并适应机器人在半结构化和危险环境中可能遇到的不同类型的场景。所提出的框架的组成部分包括:一种新颖的双边主从控制、一个名为 CERNbot 的新型机器人平台,以及一个先进的用户友好型多模式人机界面,也用于操作员的离线交易