编号 名称 编号 名称 编号 1 BARBAGLIA ANNA 10 CHIERA MARIA 19 MINACCI ADRIANA 2 BARBAGLIA M. LUCIA 11 D'ANDREA DONATELLA 20 PALMA ANNA RITA 3 BOLLA MICHELA 12 DRESTI LORELLA 21 SAVOIA ANGELA MARIA 4 BOLLA ROBERTA 13 ERBETTA LUISELLA 22 SEMPRINI FIORENZA 5 CAPURSO CLAUDIA 14 FAVOTTO STEFANIA 23 TENACE MICHELE 6 CASCELLA ANGELA 15 SPINA NICOLA 24 TROMBETTA ILARIA 7 CERUTTI DANIELA 16 LEO MARIA 25 ZAPPATINI ALBERTO 8 CERUTTI STEFANIA 17 MALGAROLI CRISTINA 26 9 CHIAPPINI SANDRA 18玛丽埃塔·米莱娜 27
III-V 半导体与硅外延杂化过程中的晶体相控制 Marta Rio Calvo、Jean-Baptiste Rodriguez *、Charles Cornet、Laurent Cerutti、Michel Ramonda、Achim Trampert、Gilles Patriarche 和 Éric Tournié * Dr. M. Rio Calvo、Dr. J.-B.罗德里格斯、 L. Cerutti 博士、 Pr. É. Tournié IES,蒙彼利埃大学,法国国家科学研究院,F- 34000 蒙彼利埃,法国 电子邮箱:jean-baptiste.rodriguez@umontpellier.fr , eric.tournie@umontpellier.fr Pr. C. Cornet 雷恩大学,雷恩国立应用科学学院,法国国家科学研究院,FOTON 研究所 – UMR 6082,F-35000 雷恩,法国 Dr. M. Ramonda CTM,蒙彼利埃大学,F- 34000 蒙彼利埃,法国 Dr. A. Trampert Paul-Drude-Institut für Festocorporelektronik,Leibniz-Institut im Forschungsverbund Berlin eV,Hausvogteiplatz 5-7,10117,柏林,德国 Dr. G. Patriarche 巴黎-萨克雷大学,法国国家科学研究院,纳米科学与技术中心纳米技术,91120,帕莱索,法国 关键词:外延生长,反相域,单片集成,III-V 半导体,硅衬底
Cern Beam物理学:Matthew Fraser,Eliott Johnson,Nikolaos Charitonidis,Rebecca Taylor Beam操作:Marc Delrieux,Linac3和Leir Teams Beam仪器:Federico Roncarolo,Inaki Ortega Ruiz,Jocelyn Tan,Jocelyn tan,Jocelly brreth,Aboub eboub eboun damhmun NOLI CHAM和IRRAD:Salvatore Danzeca,Federico Ravotti辐射保护:Robert Froeschl,Angelo Infantino Fluka:Francesco Cerutti,Luigi Esposito知识转移:Enrico Chesta R2E:Ruben Garcia Alia,Matteo Brucoli,Rudy ferrea and gire and giuse and n n and Alia Emriskova,Mario Sacristan,Daniel Prelipcean集团和部门管理:Brennan Goddard,Simone Gilardoni,Markus Brugger
Mario Cerutti,Lavazza基金会秘书和Lavazza集团机构关系与可持续性负责人:“面对加速向循环经济过渡的需要,我们的基金会于2004年建立的基金会建立了一个想法,该想法是将我们签名的多方利益持有人的循环态度运用的想法:如果在其他方面,其他人都可以在其他方面依靠其他人来依靠其他人,那么这只能与其他人相处,而这只能在coffece上依靠,这是索尼斯派对,这是索尼斯派对,这是索尼斯派对,这是索尼斯的行动,这是索引,这是索尼斯的行动,这是索引的,这是索尼斯的行动。真正提升圆形过渡创新和协作是推动我们策略的关键字。这个新中心代表了一个宝贵的预竞争区域,有可能对环境产生较低的影响并提高咖啡种植者和其他利益相关者的收入:供应链所有参与者加入该集团并积极参与的所有参与者的一个很好的理由。”
* 通讯作者:hcerutti1@unl.edu † 现地址:天津科技大学生物技术学院,食品营养与安全国家重点实验室,天津 300457,中国 ‡ 现地址:捷克共和国布尔诺 Hudcova 296/70 兽医研究所微生物学和抗菌素耐药性研究室 § 共同资深作者。这些作者贡献相同(SA、XM)。DAW、MHS、DPW 和 HC 构思并设计了这项研究。SA、XM、RB、ZPH、MK、XW 和 DAW 进行了实验。SA、XM、DAW、MHS、DPW 和 HC 分析了数据。SA、DPW 和 HC 撰写了手稿。所有作者均阅读并认可了这篇文章。根据作者须知 (https://academic.oup.com/plphys/pages/general-instructions) 中所述的政策,负责分发与本文所述研究结果相关的材料的作者是 Heriberto Cerutti (hcerutti1@unl.edu)。
椅子:Andrea Cerutti和Laia Alsina。15:30-16:00h。 自身免疫性疾病中B细胞干扰中的更新。 弗吉尼亚pascual。 16:00-16:30H。 T细胞在B细胞自身免疫中的作用。 CarolaGarcíaDeVinuesa。 16:30-17:00和谐中断:30分钟17:00-17:30H。 自身免疫性疾病中的CAR-T疗法:功效和安全性的差距和已知。 Manel Juan。 17:30-18:00h。 B细胞储层在儿科中的生物标志物了解B细胞耗尽疗法的影响。 AngelaDeyà-Martínez。 18:00 - 18:30H。 免疫失调中的同性造血干细胞移植。 Andrew R Gennery。 18:30-19:00h。 免疫疾病中的基因治疗。 Alessandra Magnani。 19:30H。 结论和告别。 Laia Alsina和JordiAntón。15:30-16:00h。自身免疫性疾病中B细胞干扰中的更新。弗吉尼亚pascual。16:00-16:30H。 T细胞在B细胞自身免疫中的作用。 CarolaGarcíaDeVinuesa。 16:30-17:00和谐中断:30分钟17:00-17:30H。 自身免疫性疾病中的CAR-T疗法:功效和安全性的差距和已知。 Manel Juan。 17:30-18:00h。 B细胞储层在儿科中的生物标志物了解B细胞耗尽疗法的影响。 AngelaDeyà-Martínez。 18:00 - 18:30H。 免疫失调中的同性造血干细胞移植。 Andrew R Gennery。 18:30-19:00h。 免疫疾病中的基因治疗。 Alessandra Magnani。 19:30H。 结论和告别。 Laia Alsina和JordiAntón。16:00-16:30H。T细胞在B细胞自身免疫中的作用。 CarolaGarcíaDeVinuesa。 16:30-17:00和谐中断:30分钟17:00-17:30H。 自身免疫性疾病中的CAR-T疗法:功效和安全性的差距和已知。 Manel Juan。 17:30-18:00h。 B细胞储层在儿科中的生物标志物了解B细胞耗尽疗法的影响。 AngelaDeyà-Martínez。 18:00 - 18:30H。 免疫失调中的同性造血干细胞移植。 Andrew R Gennery。 18:30-19:00h。 免疫疾病中的基因治疗。 Alessandra Magnani。 19:30H。 结论和告别。 Laia Alsina和JordiAntón。T细胞在B细胞自身免疫中的作用。CarolaGarcíaDeVinuesa。 16:30-17:00和谐中断:30分钟17:00-17:30H。 自身免疫性疾病中的CAR-T疗法:功效和安全性的差距和已知。 Manel Juan。 17:30-18:00h。 B细胞储层在儿科中的生物标志物了解B细胞耗尽疗法的影响。 AngelaDeyà-Martínez。 18:00 - 18:30H。 免疫失调中的同性造血干细胞移植。 Andrew R Gennery。 18:30-19:00h。 免疫疾病中的基因治疗。 Alessandra Magnani。 19:30H。 结论和告别。 Laia Alsina和JordiAntón。CarolaGarcíaDeVinuesa。16:30-17:00和谐中断:30分钟17:00-17:30H。自身免疫性疾病中的CAR-T疗法:功效和安全性的差距和已知。 Manel Juan。 17:30-18:00h。 B细胞储层在儿科中的生物标志物了解B细胞耗尽疗法的影响。 AngelaDeyà-Martínez。 18:00 - 18:30H。 免疫失调中的同性造血干细胞移植。 Andrew R Gennery。 18:30-19:00h。 免疫疾病中的基因治疗。 Alessandra Magnani。 19:30H。 结论和告别。 Laia Alsina和JordiAntón。自身免疫性疾病中的CAR-T疗法:功效和安全性的差距和已知。Manel Juan。 17:30-18:00h。 B细胞储层在儿科中的生物标志物了解B细胞耗尽疗法的影响。 AngelaDeyà-Martínez。 18:00 - 18:30H。 免疫失调中的同性造血干细胞移植。 Andrew R Gennery。 18:30-19:00h。 免疫疾病中的基因治疗。 Alessandra Magnani。 19:30H。 结论和告别。 Laia Alsina和JordiAntón。Manel Juan。17:30-18:00h。 B细胞储层在儿科中的生物标志物了解B细胞耗尽疗法的影响。 AngelaDeyà-Martínez。 18:00 - 18:30H。 免疫失调中的同性造血干细胞移植。 Andrew R Gennery。 18:30-19:00h。 免疫疾病中的基因治疗。 Alessandra Magnani。 19:30H。 结论和告别。 Laia Alsina和JordiAntón。17:30-18:00h。B细胞储层在儿科中的生物标志物了解B细胞耗尽疗法的影响。AngelaDeyà-Martínez。 18:00 - 18:30H。 免疫失调中的同性造血干细胞移植。 Andrew R Gennery。 18:30-19:00h。 免疫疾病中的基因治疗。 Alessandra Magnani。 19:30H。 结论和告别。 Laia Alsina和JordiAntón。AngelaDeyà-Martínez。18:00 - 18:30H。 免疫失调中的同性造血干细胞移植。 Andrew R Gennery。 18:30-19:00h。 免疫疾病中的基因治疗。 Alessandra Magnani。 19:30H。 结论和告别。 Laia Alsina和JordiAntón。18:00 - 18:30H。免疫失调中的同性造血干细胞移植。Andrew R Gennery。 18:30-19:00h。 免疫疾病中的基因治疗。 Alessandra Magnani。 19:30H。 结论和告别。 Laia Alsina和JordiAntón。Andrew R Gennery。18:30-19:00h。 免疫疾病中的基因治疗。 Alessandra Magnani。 19:30H。 结论和告别。 Laia Alsina和JordiAntón。18:30-19:00h。免疫疾病中的基因治疗。Alessandra Magnani。19:30H。 结论和告别。 Laia Alsina和JordiAntón。19:30H。结论和告别。Laia Alsina和JordiAntón。Laia Alsina和JordiAntón。
https://www.specs.net/index.php 9。 天然产品集合。 Microsource Discovery System Inc. 2022年7月23日访问。http://www.msdis covery.com/natpr od.html 10。 Berman HM,Westbrook J,Feng Z等。 蛋白质数据库。 核酸res。 2000; 28:235-242。 doi:10.1093/nar/28.1.235 11。 Trott O,Olson AJ。 自动库克Vina:通过新的评分功能,有效的优化和多线程提高对接的速度和稳定性。 J Comput Chem。 2010; 31(2):455-461。 doi:10.1002/jcc.21334 12。 Schrödinger软件。 Schrödinger,L.L.C。,纽约,纽约,美国2020年。 13。 McNutt,Francoeur P,Aggarwal R等。 gnina 1.0:深度学习的分子对接。 J Chem。 2021; 13(1):1-20。 doi:10.1186/ s13321-021-00522-2 14。 div> Meng XY,Zhang HX,Mezei M,CuiM。分子对接:一种基于结构的药物发现的强大方法。 Curr Comput-Aid药物。 2011; 7(2):146-157。 doi:10.2174/157340911795677602 15。 Durrant JD,McCammon JA。 分子动力学模拟和药物发现。 BMC Biol。 2011; 9(1):1-9。 doi:10.1186/1741-7007-9-71 16。 案例DA,Betz RM,Cerutti DS等。 琥珀色。 加利福尼亚大学; 2016。 17。 Lindorff-Larsen K,Piana S,Palmo K等。 改善了琥珀FF99SB蛋白力场的侧链旋转电位。 蛋白质。 J Chem Phys。https://www.specs.net/index.php 9。天然产品集合。Microsource Discovery System Inc. 2022年7月23日访问。http://www.msdis covery.com/natpr od.html 10。Berman HM,Westbrook J,Feng Z等。蛋白质数据库。核酸res。2000; 28:235-242。doi:10.1093/nar/28.1.235 11。Trott O,Olson AJ。自动库克Vina:通过新的评分功能,有效的优化和多线程提高对接的速度和稳定性。J Comput Chem。 2010; 31(2):455-461。 doi:10.1002/jcc.21334 12。 Schrödinger软件。 Schrödinger,L.L.C。,纽约,纽约,美国2020年。 13。 McNutt,Francoeur P,Aggarwal R等。 gnina 1.0:深度学习的分子对接。 J Chem。 2021; 13(1):1-20。 doi:10.1186/ s13321-021-00522-2 14。 div> Meng XY,Zhang HX,Mezei M,CuiM。分子对接:一种基于结构的药物发现的强大方法。 Curr Comput-Aid药物。 2011; 7(2):146-157。 doi:10.2174/157340911795677602 15。 Durrant JD,McCammon JA。 分子动力学模拟和药物发现。 BMC Biol。 2011; 9(1):1-9。 doi:10.1186/1741-7007-9-71 16。 案例DA,Betz RM,Cerutti DS等。 琥珀色。 加利福尼亚大学; 2016。 17。 Lindorff-Larsen K,Piana S,Palmo K等。 改善了琥珀FF99SB蛋白力场的侧链旋转电位。 蛋白质。 J Chem Phys。J Comput Chem。2010; 31(2):455-461。doi:10.1002/jcc.21334 12。Schrödinger软件。Schrödinger,L.L.C。,纽约,纽约,美国2020年。 13。 McNutt,Francoeur P,Aggarwal R等。 gnina 1.0:深度学习的分子对接。 J Chem。 2021; 13(1):1-20。 doi:10.1186/ s13321-021-00522-2 14。 div> Meng XY,Zhang HX,Mezei M,CuiM。分子对接:一种基于结构的药物发现的强大方法。 Curr Comput-Aid药物。 2011; 7(2):146-157。 doi:10.2174/157340911795677602 15。 Durrant JD,McCammon JA。 分子动力学模拟和药物发现。 BMC Biol。 2011; 9(1):1-9。 doi:10.1186/1741-7007-9-71 16。 案例DA,Betz RM,Cerutti DS等。 琥珀色。 加利福尼亚大学; 2016。 17。 Lindorff-Larsen K,Piana S,Palmo K等。 改善了琥珀FF99SB蛋白力场的侧链旋转电位。 蛋白质。 J Chem Phys。Schrödinger,L.L.C。,纽约,纽约,美国2020年。13。McNutt,Francoeur P,Aggarwal R等。gnina 1.0:深度学习的分子对接。J Chem。 2021; 13(1):1-20。 doi:10.1186/ s13321-021-00522-2 14。 div> Meng XY,Zhang HX,Mezei M,CuiM。分子对接:一种基于结构的药物发现的强大方法。 Curr Comput-Aid药物。 2011; 7(2):146-157。 doi:10.2174/157340911795677602 15。 Durrant JD,McCammon JA。 分子动力学模拟和药物发现。 BMC Biol。 2011; 9(1):1-9。 doi:10.1186/1741-7007-9-71 16。 案例DA,Betz RM,Cerutti DS等。 琥珀色。 加利福尼亚大学; 2016。 17。 Lindorff-Larsen K,Piana S,Palmo K等。 改善了琥珀FF99SB蛋白力场的侧链旋转电位。 蛋白质。 J Chem Phys。J Chem。2021; 13(1):1-20。doi:10.1186/ s13321-021-00522-2 14。 div>Meng XY,Zhang HX,Mezei M,CuiM。分子对接:一种基于结构的药物发现的强大方法。 Curr Comput-Aid药物。 2011; 7(2):146-157。 doi:10.2174/157340911795677602 15。 Durrant JD,McCammon JA。 分子动力学模拟和药物发现。 BMC Biol。 2011; 9(1):1-9。 doi:10.1186/1741-7007-9-71 16。 案例DA,Betz RM,Cerutti DS等。 琥珀色。 加利福尼亚大学; 2016。 17。 Lindorff-Larsen K,Piana S,Palmo K等。 改善了琥珀FF99SB蛋白力场的侧链旋转电位。 蛋白质。 J Chem Phys。Meng XY,Zhang HX,Mezei M,CuiM。分子对接:一种基于结构的药物发现的强大方法。Curr Comput-Aid药物。2011; 7(2):146-157。 doi:10.2174/157340911795677602 15。 Durrant JD,McCammon JA。 分子动力学模拟和药物发现。 BMC Biol。 2011; 9(1):1-9。 doi:10.1186/1741-7007-9-71 16。 案例DA,Betz RM,Cerutti DS等。 琥珀色。 加利福尼亚大学; 2016。 17。 Lindorff-Larsen K,Piana S,Palmo K等。 改善了琥珀FF99SB蛋白力场的侧链旋转电位。 蛋白质。 J Chem Phys。2011; 7(2):146-157。doi:10.2174/157340911795677602 15。Durrant JD,McCammon JA。分子动力学模拟和药物发现。BMC Biol。 2011; 9(1):1-9。 doi:10.1186/1741-7007-9-71 16。 案例DA,Betz RM,Cerutti DS等。 琥珀色。 加利福尼亚大学; 2016。 17。 Lindorff-Larsen K,Piana S,Palmo K等。 改善了琥珀FF99SB蛋白力场的侧链旋转电位。 蛋白质。 J Chem Phys。BMC Biol。2011; 9(1):1-9。doi:10.1186/1741-7007-9-71 16。案例DA,Betz RM,Cerutti DS等。琥珀色。加利福尼亚大学; 2016。 17。 Lindorff-Larsen K,Piana S,Palmo K等。 改善了琥珀FF99SB蛋白力场的侧链旋转电位。 蛋白质。 J Chem Phys。加利福尼亚大学; 2016。17。Lindorff-Larsen K,Piana S,Palmo K等。改善了琥珀FF99SB蛋白力场的侧链旋转电位。蛋白质。J Chem Phys。2010; 78(8):1950-1958。doi:10.1002/prot.22711 18。Horn HW,Swope WC,Pitera JW等。开发了改进的生物分子模拟的四个位点水模型:tip4p-ew。2004; 120(20):9665-9678。 doi:10.1063/1.1683075 19。 Beauchamp KA,Lin YS,Das R,Pande vs。蛋白质场是否越来越好? 在524个不同的NMR测量值上进行系统基准。 J化学理论计算。 2012; 8(4):1409-1414。 doi:10.1021/ct2007814 20。 Zhang H,Yin C,Jiang Y,van der SpoelD。氨基酸的力场基准:I。在不同的水模型中的水合和扩散。 J Chem Inf模型。 2018; 58(5):1037-1052。 doi:10.1021/acs。 JCIM.8B00026 21。 Wang J,Wolf RM,Caldwell JW,Kollman PA,Case DA。 一般琥珀色场的开发和测试。 J Comput Chem。 2004; 25(9):1157-1174。 doi:10.1002/jcc.20035 22。 Singh AK,Rana HK,Singh V,Yadav TC,Varadwaj P,Pandey AK。 评估链霉菌素诱导的糖尿病大鼠饮食中酚类化合物绿酸的抗糖尿病活性:分子对接,分子动力学,在硅毒性,体外和体内研究中。 Comput Biol Med。 2021; 134:104462。 doi:10.1016/j。 compbiomed.2021.104462 23。 Jakalian A,Bush BL,Jack DB,Bayly CI。 快速,有效地产生高质量的原子电荷。 AM1-BCC模型:I。 方法。 J Comput Chem。 2000; 21(2):132-146。 doi:10.1002/jcc.10128 24。2004; 120(20):9665-9678。doi:10.1063/1.1683075 19。Beauchamp KA,Lin YS,Das R,Pande vs。蛋白质场是否越来越好? 在524个不同的NMR测量值上进行系统基准。 J化学理论计算。 2012; 8(4):1409-1414。 doi:10.1021/ct2007814 20。 Zhang H,Yin C,Jiang Y,van der SpoelD。氨基酸的力场基准:I。在不同的水模型中的水合和扩散。 J Chem Inf模型。 2018; 58(5):1037-1052。 doi:10.1021/acs。 JCIM.8B00026 21。 Wang J,Wolf RM,Caldwell JW,Kollman PA,Case DA。 一般琥珀色场的开发和测试。 J Comput Chem。 2004; 25(9):1157-1174。 doi:10.1002/jcc.20035 22。 Singh AK,Rana HK,Singh V,Yadav TC,Varadwaj P,Pandey AK。 评估链霉菌素诱导的糖尿病大鼠饮食中酚类化合物绿酸的抗糖尿病活性:分子对接,分子动力学,在硅毒性,体外和体内研究中。 Comput Biol Med。 2021; 134:104462。 doi:10.1016/j。 compbiomed.2021.104462 23。 Jakalian A,Bush BL,Jack DB,Bayly CI。 快速,有效地产生高质量的原子电荷。 AM1-BCC模型:I。 方法。 J Comput Chem。 2000; 21(2):132-146。 doi:10.1002/jcc.10128 24。Beauchamp KA,Lin YS,Das R,Pande vs。蛋白质场是否越来越好?在524个不同的NMR测量值上进行系统基准。J化学理论计算。2012; 8(4):1409-1414。 doi:10.1021/ct2007814 20。 Zhang H,Yin C,Jiang Y,van der SpoelD。氨基酸的力场基准:I。在不同的水模型中的水合和扩散。 J Chem Inf模型。 2018; 58(5):1037-1052。 doi:10.1021/acs。 JCIM.8B00026 21。 Wang J,Wolf RM,Caldwell JW,Kollman PA,Case DA。 一般琥珀色场的开发和测试。 J Comput Chem。 2004; 25(9):1157-1174。 doi:10.1002/jcc.20035 22。 Singh AK,Rana HK,Singh V,Yadav TC,Varadwaj P,Pandey AK。 评估链霉菌素诱导的糖尿病大鼠饮食中酚类化合物绿酸的抗糖尿病活性:分子对接,分子动力学,在硅毒性,体外和体内研究中。 Comput Biol Med。 2021; 134:104462。 doi:10.1016/j。 compbiomed.2021.104462 23。 Jakalian A,Bush BL,Jack DB,Bayly CI。 快速,有效地产生高质量的原子电荷。 AM1-BCC模型:I。 方法。 J Comput Chem。 2000; 21(2):132-146。 doi:10.1002/jcc.10128 24。2012; 8(4):1409-1414。doi:10.1021/ct2007814 20。Zhang H,Yin C,Jiang Y,van der SpoelD。氨基酸的力场基准:I。在不同的水模型中的水合和扩散。J Chem Inf模型。2018; 58(5):1037-1052。 doi:10.1021/acs。 JCIM.8B00026 21。 Wang J,Wolf RM,Caldwell JW,Kollman PA,Case DA。 一般琥珀色场的开发和测试。 J Comput Chem。 2004; 25(9):1157-1174。 doi:10.1002/jcc.20035 22。 Singh AK,Rana HK,Singh V,Yadav TC,Varadwaj P,Pandey AK。 评估链霉菌素诱导的糖尿病大鼠饮食中酚类化合物绿酸的抗糖尿病活性:分子对接,分子动力学,在硅毒性,体外和体内研究中。 Comput Biol Med。 2021; 134:104462。 doi:10.1016/j。 compbiomed.2021.104462 23。 Jakalian A,Bush BL,Jack DB,Bayly CI。 快速,有效地产生高质量的原子电荷。 AM1-BCC模型:I。 方法。 J Comput Chem。 2000; 21(2):132-146。 doi:10.1002/jcc.10128 24。2018; 58(5):1037-1052。doi:10.1021/acs。JCIM.8B00026 21。Wang J,Wolf RM,Caldwell JW,Kollman PA,Case DA。 一般琥珀色场的开发和测试。 J Comput Chem。 2004; 25(9):1157-1174。 doi:10.1002/jcc.20035 22。 Singh AK,Rana HK,Singh V,Yadav TC,Varadwaj P,Pandey AK。 评估链霉菌素诱导的糖尿病大鼠饮食中酚类化合物绿酸的抗糖尿病活性:分子对接,分子动力学,在硅毒性,体外和体内研究中。 Comput Biol Med。 2021; 134:104462。 doi:10.1016/j。 compbiomed.2021.104462 23。 Jakalian A,Bush BL,Jack DB,Bayly CI。 快速,有效地产生高质量的原子电荷。 AM1-BCC模型:I。 方法。 J Comput Chem。 2000; 21(2):132-146。 doi:10.1002/jcc.10128 24。Wang J,Wolf RM,Caldwell JW,Kollman PA,Case DA。一般琥珀色场的开发和测试。J Comput Chem。 2004; 25(9):1157-1174。 doi:10.1002/jcc.20035 22。 Singh AK,Rana HK,Singh V,Yadav TC,Varadwaj P,Pandey AK。 评估链霉菌素诱导的糖尿病大鼠饮食中酚类化合物绿酸的抗糖尿病活性:分子对接,分子动力学,在硅毒性,体外和体内研究中。 Comput Biol Med。 2021; 134:104462。 doi:10.1016/j。 compbiomed.2021.104462 23。 Jakalian A,Bush BL,Jack DB,Bayly CI。 快速,有效地产生高质量的原子电荷。 AM1-BCC模型:I。 方法。 J Comput Chem。 2000; 21(2):132-146。 doi:10.1002/jcc.10128 24。J Comput Chem。2004; 25(9):1157-1174。 doi:10.1002/jcc.20035 22。 Singh AK,Rana HK,Singh V,Yadav TC,Varadwaj P,Pandey AK。 评估链霉菌素诱导的糖尿病大鼠饮食中酚类化合物绿酸的抗糖尿病活性:分子对接,分子动力学,在硅毒性,体外和体内研究中。 Comput Biol Med。 2021; 134:104462。 doi:10.1016/j。 compbiomed.2021.104462 23。 Jakalian A,Bush BL,Jack DB,Bayly CI。 快速,有效地产生高质量的原子电荷。 AM1-BCC模型:I。 方法。 J Comput Chem。 2000; 21(2):132-146。 doi:10.1002/jcc.10128 24。2004; 25(9):1157-1174。doi:10.1002/jcc.20035 22。Singh AK,Rana HK,Singh V,Yadav TC,Varadwaj P,Pandey AK。评估链霉菌素诱导的糖尿病大鼠饮食中酚类化合物绿酸的抗糖尿病活性:分子对接,分子动力学,在硅毒性,体外和体内研究中。Comput Biol Med。2021; 134:104462。 doi:10.1016/j。compbiomed.2021.104462 23。Jakalian A,Bush BL,Jack DB,Bayly CI。快速,有效地产生高质量的原子电荷。AM1-BCC模型:I。方法。J Comput Chem。 2000; 21(2):132-146。 doi:10.1002/jcc.10128 24。J Comput Chem。2000; 21(2):132-146。doi:10.1002/jcc.10128 24。Jakalian A,Jack DB,Bayly CI。高,有效地生成高 -
A.个人陈述我于2004年在Massimo Zeviani博士的实验室中进入了线粒体医学领域的神经学研究所“ C.Besta”在意大利米兰,在2009年,我在Massimo Zeviani博士的监督下被任命为初级团体。从那时起,我的主要研究兴趣一直集中在翻译方面,其最终目标是阐明人类疾病的生物学基础并开发创新和有效的疗法。到此为止,我开发了一系列线粒体疾病的动物模型,并通过使用几种技术来表征它们,从体内测试到研究疾病的神经代谢基础,到基于代谢组学和蛋白质组学的体外方法,以阐明对基因的代谢后果,对人类的疾病进行了疾病,并调查了对人的疾病的代谢后果。基于导致疾病的机制的知识,我使用药理学和基因治疗策略开发了新的治疗方法。这些研究的主要成就是(i)发现乙纳马氏脑病(EE)的致病机制,即最近,由于核基因缺陷,我的实验室证明了基于AAV的基因疗法在其他线粒体疾病中的潜力(Bottani等,Mol Ther,2014; Di Meo等,Gene Therapy,2017,2017,Pinheiro等,Pinheiro等,Mol Ther,Mol Ther,Mol ther,2020,Corrà等,Brain,Brain,20222222222222。这些研究构成了未来几年将这些疗法转移给人类的基本原则的证据。强大的细胞色素C氧化酶抑制剂硫化物(H2S)的积累(Tiranti等,Nat Med,2009)(ii)基于N-乙酰甲基半胱氨酸和甲硝唑高质的疗法的发展,在小鼠和患者中的EE治疗中有效,这是IIS Comcomi et Comcomi,Nat,Nat,Nat,Nat At ant,Nat,Nat At ant,通过使用AMPK激动剂AICAR或NAD+前体烟胺核苷(NR),PGC1ALPHA依赖性线粒体途径有效地改善细胞色素C氧化酶缺乏症的小鼠模型的表型由于有毒化合物的积累,例如EE和线粒体胃肠脑膜炎肌病(MNGIE),基因治疗方法治疗线粒体疾病(Di Meo等,Embo Mol Med,2012; Torres-Torres-Torres-Torronteras等,Mol Ther,2014年)。最后,他与英国剑桥Michal Minczuk合作,通过使用锌指核酸酶,帮助开发了一种基于AAV的方法来纠正特定的mtDNA突变(Gammage等人Nat Med,2018)。我们在我的实验室中进行的其他研究旨在研究通过使用替代氧化酶通过使用替代性氧化酶来解决呼吸链缺损的可能性(Dogan等,Cell Metab,2018),以定义雷帕霉素改善Mitochrial