1 System LSI部,三星电子,Yongin-si,Gyonggi-Do,韩国共和国,电子邮件:chulsoo.choi@choi@samsung.com 2 Samsung高级技术研究所,Suwon,Suwon,Gyeonggi-do,Gyonggi-do,韩国,韩国,3 Semiconductor R&D Center,Semiconductor R&D Center,Samiconductor R&D Center,Samsong remolon oferea Electronemonge oferon oferon oferon oferon oferon oferon oferon oferon oferon,wore,hissi si,gye,he gye, 4铸造司,三星电子,扬宁 - 锡,朝鲜共和国摘要 - 在本文中,一种称为Nano-Prism(NP)设计的元体型结构是由完整的EM-WAVE分析工具设计的,严格耦合的波浪分析(RCWA),并在0.64μmpixel Image Sensor上应用于50MMM,并将常规μ-镜头。为了将NP结构应用于产品级别图像传感器,不仅要在直接光中固定特征,而且还要在倾斜的光条件下使用主要射线角(CRA)保护特征。在本文中,描述了NP设计和改进的像素特征在斜光条件下。此外,NP的关键优势之一是光谱响应可以通过安排图案设计而不更改颜色滤镜材料来调节,这在本文中得到了验证。此外,在本文中也证明了创新的量子效率(QE)提高(QE)的提高(QE),这导致了25%的灵敏度和1.2dB的信号与噪声比(SNR)的改善,以及其他重要的传感器特性,例如自动对焦和分辨率。
摘要 - 环振荡器是集成电路的必要块,充当数字时钟生成器。该振荡器有几种进度技术。然而,最适当的环振荡器的拓扑选择需要对电气特征进行权衡的分析。本文介绍了两个拓扑之间的比较研究,以实施环振荡器。每个拓扑都使用特定的延迟单元格:CMOS逆变器或差分对放大器。目标输出频率为10.44 MHz,振荡器以130 nm的技术实现。拓扑是根据功率耗散,硅面积和制造过程变化的比较。电气模拟表明,逆变器环振荡器具有较小的功耗和较小的硅面积。在另一侧,差分放大器振荡器对过程变化的敏感性较小。这些结果可以帮助指导设计师确定适合集成电路设计中系统要求的最佳拓扑。索引项 - 逆变器,差分对,环振荡器,人体动作过程变化。
与目前的平面传感器相比,曲面成像传感器可显著减小成像系统的尺寸、重量和成本,同时减轻离轴光学像差。在过去二十年中,解锁这些关键功能引起了主要参与者的兴趣。SILINA 一直在开发一种可适应各种传感器特性的 CMOS 图像传感器弯曲工艺。该工艺使图像传感器能够变形为各种形状,从而最大限度地提高每个成像系统的性能。事实上,曲面 CMOS 图像传感器 (CIS) 有助于制造紧凑型光学仪器,尤其是成像仪、望远镜和光谱仪。简化光学系统可以将光机约束从设计阶段释放到集成阶段。如今,自由曲面光学元件参与了满足紧凑、快速、广角和高分辨率系统共同需求的解决方案的开发。然而,自由曲面在制造和计量方面仍然极其昂贵。此外,场曲像差仍然难以校正,而曲面 CIS 则为此提供了合适的解决方案。2021 年初,SILINA 展示了球面和非球面 CIS 的制造,为光学系统设计开辟了新领域。光学设计师现在可以考虑各种传感器形状,通过考虑球面、非球面或更复杂的焦面来优化他们的系统。
I。300-GHz带具有高速数据通信[1],[2],[3],[4],[5]的巨大潜力。随着2017年IEEE 802.15.3d标准的创建,用于从252至322 GHz的无牌频带中运行的无线电[6],现在对开发Ter-Ahertz(THZ)收发器的兴趣更高。此外,许多研究人员已经证明了这种无线电在CMOS技术中的生存能力[3],[4],[5],[7],[8],[8],[9],[10],[11],[11],[12],描绘了一个有希望的未来。我们应该指出,这些示例在140 [8]至650 MW [9]之间消耗,并使用片外局部振荡器(LO)信号产生。在本文中,我们认为THZ数据通信无线电的可行性取决于其功耗。然后,我们提出一个绘制52 MW的单芯片接收器(RX)和LO Generator。该原型已在28 nm CMOS技术中制造,并占据了0.06 mm 2的活性面积。第二节涉及与THZ RX设计有关的一般问题,第三部分描述了拟议的RX体系结构。
摘要:设计并测试了带电粒子成像的紧凑型探针,并在源活动映射和无线电指导手术中进行了潜在应用。这项技术的开发对医学成像具有显着影响,为医疗保健专业人员提供了准确且有效的诊断和治疗工具。为了满足这些应用程序的可移植性要求,该探针设计用于电池操作和与PC的无线通信。核心传感器是一种双层CMOS SPAD检测器,使用150 nm技术制造,该技术使用重叠的单元格产生巧合信号并降低了深度计数速率(DCR)。传感器与微控制器进行管理和连接,并开发了自定义公司以促进与传感器的通信。通过用DCR来表征板上SPAD检测器的性能,结果与使用故意开发的台式设置在同一芯片样品上进行的表征测量结果一致。
科学互补的金属氧化物 - 氧化物 - 氧化型(CMOS)检测器近年来由于其低成本和高可用性而迅速发展。它们在电荷耦合设备(CCD)方面也具有一些优势,例如高帧速率或通常降低读数噪声。这些传感器在开发第一个反向释放模型后开始用于天文学。因此,值得研究他们的特征,优势和弱点。最广泛的CMOS传感器之一是Sony IMX系列中的CMOS传感器,这些传感器因其低成本而基于小型和快速望远镜的大型天文学调查项目,并且可以进行广泛和高效果调查的能力。在本文中,我们旨在表征IMX455M和IMX411M传感器,这些传感器分别集成到Qhy600和Qhy411摄像机中,以用于天文观测中。这些是大型(36×24和54×40 mm)的天然16位传感器,具有3.76μm像素,并且在光学范围内敏感。我们介绍了两个相机实验室表征的结果。他们显示出非常低的暗电流为0.011和0.007 e -px -1 s -1 @ 1 @ - 10°C,分别为qhy600和qhy411摄像机。它们还显示了温暖像素的存在,qhy600中约为0.024%,qhy411中的0.005%。温暖的像素被证明是稳定的,并且在曝光时间内是线性的,因此可以轻松地使用深色框架校正。受盐和胡椒噪声影响的像素约为总计的2%,并提出了纠正这种效果的方法。两个摄像头都附在夜间望远镜上,并进行了几次在天空测试以证明其功能。天上的测试表明,这些CMO的行为以及相似特征的CCD,并且(例如)它们可以达到一些Mili-Magnitudes的光度准确度。
PIC SOI 晶圆上的附加光子设计层与 BiCMOS BEOL 层一起 LBE 提供局部背面蚀刻模块,用于局部去除硅以提高无源性能(适用于所有技术) TSV 模块是 SG13S 和 SG13G2 技术中的附加选项,可通过硅通孔提供 RF 接地以提高 RF 性能。 MEMRES 基于 SG13S 技术中的电阻式 TiN/HfO 2-x/TiN 开关器件的完全 CMOS 集成忆阻模块。还提供包括布局和 VerilogA 仿真模型的工艺设计套件。 TSV+RDL 模块是 SG12S 和 SG13G2 技术中的附加选项,在 BiCMOS 上提供具有单个重新分布层的 TSV
基于皮层脑电图 (ECoG) 的双向脑机接口 (BD-BCI) 引起了越来越多的关注,因为:(1) 需要同时进行刺激和记录以恢复人类的感觉运动功能 [1] 和 (2) 良好的空间分辨率和信号保真度以及临床实用性。在刺激方面,这种 BD-BCI 可能需要 >10mA 的双相电流来引发人工感觉,以及 >20V 的电压顺应性以适应各种生物阻抗 [1]。两个刺激相之间的电荷不匹配会导致电压积累,从而造成电极腐蚀和组织损伤。现有的电荷平衡 (CB) 技术,例如电荷包注入 (CPI) [2] 和基于时间的电荷平衡 (TCB) [1],会在脉冲间隔内产生 CB 电流,导致不必要的二次感觉和过度的刺激伪影 (SA)。对于记录,低输入参考噪声 (IRN) 是获取小神经信号 (NS) 所必需的,而大动态范围 (DR) 则是容纳大 SA 所必需的。现有的记录系统采用 SAR [1] 或连续时间 delta-sigma (CT-ΔΣ) [3] ADC(图 4)。前者由于 DAC 不匹配而具有有限的 DR,而后者则受到环路延迟内大幅度尖锐 SA 引起的失真的影响。尽管在 [4] 中,ΔΣ-ADC 的采样频率会自适应地变化以适应 SA,但所需的稳定时间很长。为了解决上述问题,本文提出了一种基于 ECoG 的 BD-BCI,其中包括:(1) 具有双模基于时间的电荷平衡 (DTCB) 的高压 (HV) 刺激系统和 (2) 高动态范围 (HDR) 时域流水线神经采集 (TPNA) 系统。图 1 描绘了所提出的 BD-BCI。刺激系统包括 4 个刺激器,每个刺激器包括一个 8 位分段电流控制 DAC 和一个 HV 输出驱动器,用于生成刺激脉冲。为了执行 CB,每个刺激器都采用具有 2 种模式的 DTCB 环路,即无伪影 (AL) TCB 和脉冲间有界 (IB) TCB 模式。3 阶 II 型 PLL 为基于时间的量化创建所需的时钟。记录系统有 4 个通道,每个通道都采用低增益模拟前端 (LG-AFE)、HDR 电压时间转换器 (VTC)、两步流水线 (TSP) TDC 和一个数字核心,其中操作模式由状态机控制。受 [1] 的启发,所提出的 DTCB 的工作原理如图 2 所示。AL-TCB 监测电极电压 V ESn -V CM (1≤n≤N;此处,N=4)并调整后续刺激脉冲的幅度而不产生额外的 SA,而当 |V ESn -V CM | 过大而需要立即去除电荷时,IB-TCB 在下一个刺激脉冲之前完成 CB。在第一个 T CC 开始时,如果 |V ESn - V CM |≤V TH,AL (V TH,AL 是标志着需要立即去除电荷的过电位阈值),则 AL-TCB 导通,并且 V ESn - V CM 在第一个 T CC 周期内由 VTC 和 TDC 数字化。然后将数字数据 D TDCn 馈送到通道间干扰消除 (ICIC) 模块,该模块可补偿由于多极刺激导致的通道间干扰 (ICI) 引入的电压误差。接下来,数字直流增益增强器 (DDGB) 有助于提高 CB 精度,而不会降低 AL-TCB 环路稳定性。为了执行 CB,AL-TCB 的电流(例如,I AL-Cn )(其大小由 DDGB 输出 D ALn 控制)被添加到后续刺激电流中以调整其大小。相反,仅当 |V ESn -V CM |>V TH,AL 时,IB-TCB 才会开启并在一个 T IP 内的几个 T CC 中执行 CB,直到 |V ESn - V CM |
摘要 - 近年来,神经形态计算的领域一直在迅速发展,越来越重视硬件设计和可靠性。本特别会议论文概述了神经形态计算的最新发展,重点是硬件设计和可靠性。我们首先回顾了传统的基于CMO的神经形态硬件设计的方法,并确定与可扩展性,延迟和功耗相关的挑战。然后,我们研究基于新兴技术的替代方法,在神经素影项目中采用了特定整体的光子学方法。最后,我们研究了设备可变性和衰老对神经形态硬件的可靠性的影响,以及用于减轻这些影响的技术。本评论旨在为神经形态计算中的研究人员和从业者提供宝贵的资源。索引术语 - 硅光子学,神经形态硬件,人工神经网络,尖峰神经网络,可靠性,相变材料