摘要。近几十年来,与智能混凝土创建有关的建筑材料科学方向一直在迅速发展。智能混凝土除了结构材料的功能外,还执行与其新属性相关的其他功能。在大量的智能混凝土中,有必要突出导电智能混凝土。通过在混凝土混合物中添加导电填充剂来获得这种混凝土。,就其性质而言,碳材料是最有希望的。尽管进行了大量的导电填充剂和导电混凝土的研究,但仍未对其进行概括和系统化。此外,没有用于测试填充剂和具体的导电性能的标准。因此,作者的目的是系统化有关导电智能混凝土以及导电碳填充剂的数据。提出了一种测试碳纳米材料(CNM)作为导电混凝土填充剂的电导率的方法。的认可。
制造人工膜为人类提供洁净水,关键是制造出大小相似的通道。[2,3] 商业上使用的渗透膜大多由聚合物制成,其分子链通常随机排列,因此孔径分布较宽。[4] 合成纳米导管,如碳和氮化硼纳米管[5–7] 以及通过有机合成制成的孔[8] ,能够在分子水平上控制通道特性,并已被证明可以使水快速高效地流过它们。[5,6] 然而,制造直径小于 1 纳米 [3,9] 的孔隙仍然具有挑战性,这些孔隙可以阻挡 Na + 、K + 和 Cl – 等小离子。此外,将大量平行的通道组装成边界清晰的膜也是一项技术挑战。[3,4] 二维材料的出现为创建这种小通道提供了进一步的途径。近期的例子包括石墨烯中制成的亚纳米孔[10,11],以及在氧化石墨烯[12]和二硫化钼层之间组装的二维通道[13]。所得膜表现出选择性离子渗透,但仍然缺乏可以阻止所有离子通过的孔结构。因此,开发具有高离子选择性通道的新型二维材料是十分有必要的,这可以为先进的渗透膜奠定基础。为了应对这一挑战,有人提出利用分子自组装技术辅助辐射诱导交联来创建具有明确孔结构的单分子厚的碳纳米膜(CNM)。[14]我们最近报道了分子通过 Au(111) 表面由三联苯硫醇 (TPT) 单层制备的约 1.2 纳米厚的 CNM 进行传输。 [15] 单层纳米薄膜在低能电子作用下会断裂 TPT 前驱体中的 C H 键,将高度有序的分子结构转化为坚固的可转移交联碳网络(图 1a)。这些纳米膜可允许极高的水流量,同时几乎不渗透非极性分子和原子。这归因于亚纳米通道的高面密度(≈ 10 18 m − 2 ,即每平方纳米 1 个亚纳米孔),极性水分子可以通过这些通道以单行传输。[15,16] 因此,通道密度远远超过其他纳米结构膜达到的≈ 10 14 –10 16 m − 2 。[5,10,17] 因此,这些膜代表了一种潜在的新型 2D 膜,可用于实现高性能
碳基材料具有多种不同的特性,如今已应用于生活的各个领域,包括工业、冶金、医学、光学和环境保护。然而,工业的快速发展需要更先进的材料,这些材料具有新的特性,可供未来使用。解决方案是创建混合材料,这种材料不仅结合了各个成分的特性,而且还能产生协同效应。简而言之,混合材料 (HM) 是将化学上不同的成分混合并形成相互作用的结果,例如范德华力、氢键、弱静电相互作用或共价键。形成的 HM 具有与其组成材料不同的结构,但继承了它们的一些特性和功能。重要的因素是混合物的内部结构。通过操纵这个方面,我们可以控制混合材料的物理化学性质。碳纳米材料(CNM)与聚合物和无机纳米粒子的组合改善了机械性能(Gomathi et al., 2005;Zhao et al., 2011;Dillon et al., 2015;Wu et al., 2017)、电性能(Whitsitt and Barron, 2003;Hang et al., 2005;Ivnitski et al., 2008;Liang et al., 2012)、热(Cui 等人,2011;Chen L. 等人,2014;Aghabozorg 等人,2016;Hameed 等人,2019)、吸着(Deng 等人,2005;Choi 等人,2010;Czech 等人,2015;Saud 等人, 2015年; Navrotskaya 等人,2019)和催化性质(Wu 等人,2009;Paula 等人,2011;Aazam,2014;Kim 等人,2014)性质(Kumar 等人,2008;Wu 等人,2009;Cui 等人,2011;Dillon 等人,2015)。