摘要在本文中,我们审查了一种表征CNTFET和CMOS技术中数字电路的程序,以对其进行比较。为了实现此目标,我们使用了我们已经提出的半经验紧凑型CNTFET模型以及MOS设备的BSIM4模型。在对这些模型进行了简要审查之后,我们使用与Verilog-A编程语言兼容的软件高级设计系统(ADS)回顾了NAND门和完整加法器的静态和动态表征。获得的结果允许强调两种技术之间的差异。关键字:CNTFET,MOSFET,建模,数字电路,Verilog-A。1。脱落
摘要 - 由于电子半导体部门经历了缩小规模,因此存在许多挑战,包括缩放,短通道影响,泄漏电流和稳定性。碳纳米管(CNT)已成为一种令人兴奋的新发明,可以克服CMO的局限性,同时保持高效率和可靠性。算术和逻辑单元(ALU)是微处理器和实时计算机芯片中存在的中央操作可编程逻辑组件。传统的算术逻辑单元(ALUS)是利用CMOS技术创建的,导致高功率使用,延迟以及晶体管计数。本文专门讨论了采用碳纳米管现场效应晶体管(CNTFET)的混合算术逻辑单元(ALU)的概念化和开发。首先,开发了XOR和MUX的组合,然后将其用于创建混合加法器和减法器。该研究展示了利用碳纳米管(CNT)技术的增强算术逻辑单元(ALU)的开发,模拟和评估,并将其与使用32 NM技术节点进行了将其与传统的CMOS实施进行了比较。使用碳纳米管(CNT)技术的ALU在功率使用情况,传播延迟和功率 - 延迟产品(PDP)方面的性能较高,而与CMOS技术相比。
碳纳米管 (CNT) 具有独特的结构和电气性能,其特性非常值得研究。场效应晶体管技术中 CNT 的小结构可以生产出性能更佳的小型器件。这项工作采用了田口方法来优化碳纳米管场效应晶体管 (CNTFET)。使用 Minitab 19 软件进行田口方法分析。选择了三个尺寸的三个设计参数(CNT 的直径、间距和 CNT 的数量)来提高 CNTFET 的性能。使用 L27 正交阵列和信噪比 (SNR) 来收集和分析数据。使用方差分析验证了田口方法的结果。分析结果显示了三个设计参数的最佳组合,在高功率和低功率应用方面产生了最佳性能。影响 CNTFET 电流特性的最主要设计参数是 CNT 直径,其对导通电流 (Ion)、关断电流 (Ioff) 和电流比 (Ion/Ioff) 的影响分别为 59.93%、96.15% 和 99.14%。通过确定 CNTFET 中最主要的结构,可以进一步优化器件。最终,CNTFET 器件可以在高功率和低功率应用方面得到增强。
抽象的操作跨传输放大器(OTA)是模拟电路和系统中最关键的块。随着灾难性短通道效应的互补金属氧化物半导体(CMOS)晶体管在深纳米系统下的晶体管,微电学科学家的侧重于设计基于非西硅材料的超细胞性奥塔斯。在过去的几年中,具有惊人的电气和物理性能的全面碳纳米管局部效应晶体管(GAA-CNTFET)吸引了纳米电子研究人员的广泛关注,这是代表高性能纳米级OTA的潜在平台。在这方面,这项工作旨在根据10 nm GAA-CNTFET技术节点提出一个超米型超宽带OTA。在超级尺寸的GAA-CNTFET晶体管的弹道传输操作中,提出的OTA受益,该尺寸可提供优质带宽(2.88 GHz)以及合适的功率消耗(44.8 L W)。所提出的OTA显示在1 V电源电压下的64.5 dB开环增益和59 dB的共同模式排斥比。此外,由于使用间接反馈补偿方法的利用,拟议的基于GAA-CNTFET的OTA呈现了适当的相位边缘(61),并带有较小的补偿器电容器。提到的性能指标仅占据0.198 L m 2的物理区域,提出的GAA-CNTFET OTA有可能被视为基于纳米级CMOS的OTA的替代方法。
由于 CMOS 的缩放,这些设备的局限性引发了对替代纳米设备的需求。提出了各种设备,如 FinFET、TFET、CNTFET。其中,FinFET 成为最有前途的设备之一,由于其在纳米范围内的低泄漏,它可以替代 CMOS。如今,电子设备在电池消耗方面更加紧凑和高效。由于 CMOS 的缩放限制,CMOS SRAM 已被 FinFET SRAM 取代。已经有两个 FinFET SRAM 单元,它们具有高功率效率和高稳定性。已经对这些单元进行了性能比较,以分析泄漏功率和静态噪声容限。这些单元的模拟是在 20 nm FinFET 技术下进行的。经分析,改进的 9T SRAM 单元的写入裕度实现了 1.49 倍的改进。读取裕度也显示出比本文中比较的现有单元有显著的改善。对于所提出的 0.4 V SRAM 单元,发现保持裕度更好。栅极长度已经改变,以发现栅极长度对读取裕度的影响。
摘要。本文深入研究了在XOR-XNOR细胞中应用的常规和非常规设计方法。这些单元在各种算术逻辑电路中起着至关重要的作用,在低压和功率水平下运行的VLSI设计中具有很大的计算能力。本文研究了与常规和非规定设计策略相关的困难。此外,它对当前文献中有关电路设计参数的不同XOR/XNOR单元进行了相对评估。这项研究的结果表明,低技术节点中碳纳米管现场效应晶体管(CNTFET)技术的采用显着降低了电路延迟,而浮动栅极金属氧化物半导体(FGMOS)技术在电路电力效率方面显示出卓越的解释。讨论还涵盖了FinFET技术在创建XOR/XNOR细胞中的利用。本文评估了这些XOR/XNOR细胞的电压和温度弹性。使用22nm技术节点的HSPICE工具进行了分析。基于FGMO的XOR/XNOR细胞表明,对电压和温度波动的弹性最高。采用非常规技术遇到的主要挑战涉及缺乏适当的仿真模型和复杂的制造过程。这些挑战特别阻碍了这些开拓性方法的进步和采用。