夏季冬季冬季六月至9月10月 - 上午1:00下午1:00 - 晚上9:00上午6:00-下午1:00周一至周五的星期一至周五的非高峰期全部其他工作日小时,所有其他工作日时间以及整个星期六和周日的时间。和周日小时。程序每个月,根据净计量政策的附录C第I条的定义,应将多余CRG的总千瓦时分为峰值能量和非高峰能量。应将其上峰值能量添加到参与者的额外能量(如PMPA的AR速率计划中定义),并以峰值的能量速率充电。应将非高峰能源添加到参与者的基本能源(如PMPA的AR速率计划中定义),并以非高峰能源速率充电。然后,每月的能源信用额应以适当的款项反映在参与者的账单上,以便学分应等于净计量产生的额外能源和基本能源的额外费用。
夏季冬季冬季六月至9月10月 - 上午1:00下午1:00 - 晚上9:00上午6:00-下午1:00周一至周五的星期一至周五的非高峰期全部其他工作日小时,所有其他工作日时间以及整个星期六和周日的时间。和周日小时。每个月的程序,根据净计量策略中附录C的I节的定义,应将过量客户拥有的可再生生成(CRG)的总千瓦时分为峰值能量和非高峰能源。应将其上峰值能量添加到参与者的额外能量(如PMPA的AR速率计划中定义),并以峰值的能量速率充电。应将峰值能量添加到参与者的基本能量(如PMPA的AR速率计划中定义),并以非高峰能源速率充电。然后,每月的能源信用额应以适当的款项反映在参与者的账单上,以便学分应等于净计量产生的额外能源和基本能源的额外费用。
摘要 - 高增益和量子限制噪声的放大是一个困难的问题。使用具有高动力学电感的超导传输线的参数放大不仅是解决此问题的一种有前途的技术,而且还增加了一些好处。与其他技术相比,它们具有改善功率饱和度,实现较大的分数带宽并以较高频率运行的潜力。在这种类型的放大器中,选择适当的传输线是其设计中的关键元素。鉴于当前的制造局限性,传统的线路(例如Coplanar WaveGuides(CPW))并不理想,因为很难使它们具有适当的特征阻抗,以使其具有良好的匹配和足够慢的相位速度,以使其更加紧凑。电容载荷线,也称为人造线,是解决此问题的良好解决方案。但是,很少提出设计规则或模型来指导其准确的设计。考虑到它们通常是以Floquet线的形式制造的,这一事实更加重要,必须仔细设计以抑制参数过程中出现的不希望的谐波。在本文中,我们首先提出了一种新的建模策略,基于电磁仿真软件的使用,其次是一种促进和加快CPW人造线和由其制成的Floquet线的设计的第一原理模型。然后,我们与实验结果进行了比较,以证明其准确性。最后,理论模型允许人们预测人造线的高频行为,表明它们是实现100 GHz以上参数放大器的良好候选者。
本文介绍了一种用于雷达应用的新型 X 波段碳化硅 (SiC) 共面波导 (CPW) 单片微波集成电路 (MMIC) 高功率放大器 (HPA) 设计。在设计中,采用了 0.25 μ m γ 形栅极和高电子迁移率晶体管 (HEMT),它们采用了碳化硅基氮化镓技术,因为它们具有高热导率和高功率处理能力。此外,在 8.5 GHz 至 10.5 GHz 的频率范围内,反射系数低于 -10 dB,可产生 21.05% 的分数带宽。此外,MMIC HPA 在 2 GHz 带宽内实现了 44.53% 的功率附加效率 (PAE),输出功率为 40.06 dBm。此外,由于 MMIC HPA 具有高输出功率、宽工作带宽、高 PAE 和紧凑尺寸,因此非常适合用于 X 波段有源电子扫描阵列雷达应用。索引术语 — 有源电子扫描阵列 (AESA) 雷达、共面波导 (CPW)、碳化硅 (SiC) 上的氮化镓 (GaN)、高电子迁移率晶体管 (HEMT)、单片微波集成电路 (MMIC)、高功率放大器 (HPA)。
本文系统地比较了采用相同 CMOS 后端工艺的 CPW、慢波 CPW、微带和慢波微带的传输线特性阻抗与 Q 因子之间的关系。结果表明,最佳 Q 因子的特性阻抗取决于慢波传输线的地线间距。虽然从传播模式的角度来看,介质相似,但当慢波 CPW 的特性阻抗为 §23 ȍ 和慢波微带线的特性阻抗为 §43 ȍ 时,慢波传输线可实现 60 GHz 最佳 Q 因子,并且接地平面间隙越宽,Q 因子就越大。此外,结果表明,在芯片面积相同的情况下,慢波 CPW 的最佳 Q 因子比慢波微带高 12%。这里提供的数据可用于选择 CMOS 中 S-MS 和 S-CPW 无源器件的 Z 0 值,以最大化传输线 Q 因子。
用于 mmWave 封装测试的 xWave 平台 • 信号完整性 – 短阻抗控制共面波导 (CPW) – 测试仪和 DUT 之间的 1 个转换(连接器到引线框架) – DUT 球接触 CPW • 集成解决方案(PCB/接触器合一) – 包括从测试仪到 DUT 的完整 RF 路径 – 用于电源和控制信号的 Pogo 引脚 • 生产封装测试解决方案 – 坚固的引线框架可持续数百万次循环 – 机械组装完全可现场维护 – 包括校准套件(s 参数) – 用于三温测试(-55 至 155°C)的 CTE 匹配材料
在1970年代和80年代,摄影师Colleen Kenyon(美国,1951 - 2022年)和Kathleen Kenyon(American,1951-2023)是女性艺术家运动的一部分,他们以创新的方法对媒体进行了挑战。Colleen Kenyon是使用手着色来增强自己和姐姐在家庭环境中的肖像的先驱。凯瑟琳·肯尼恩(Kathleen Kenyon)擅长于大众媒体的女性的性别特定图像来创造具有讽刺意味的光焦点。从1981年开始,两个姐妹还担任伍德斯托克摄影中心的董事,他们继续倡导妇女在艺术和有色艺术家中的发展。我的姐姐,我的自我由艺术史学家汤姆·沃尔夫(Tom Wolf)和劳里·达尔伯格(Laurie Dahlberg)策划。由CPW组织,此回顾展具有肯尼亚斯最具标志性的作品,并在纽约金斯敦的CPW和纽约州伍德斯托克的Kleinert/James Center展出。展览材料是从CPW现在持有的作品的档案中得出的。
参考文献中引入的设计。1需要-20 dB的最大回报损失,可以通过使用纯CPW线结构在下部阻抗侧使用1- µm间隙宽度来实现。在许多研究设施中,通过光刻工具以高收率制造这样的CPW线是不可行的。相比之下,我们对克洛普芬斯坦锥度的设计需要在较低阻抗侧的间隙宽度为3 µm,这是可以使用常用的光刻光刻工具可以很容易地实现的。另一方面,klopfenstein锥的-10 dB最大回报损失导致-0.45 dB的最小插入损失。当信号通过Klopfenstein锥度两次时,这种插入损失将使信号增益降低-0.9 dB,与放大器的标称15至20 dB增益相比,这是可以忽略的。
图 4. (a) 三个硅基 CPW 谐振器的内部品质因数 (𝑄 𝑖) 与平均光子数 < 𝑛 𝑝ℎ > 的关系,散点图为测量数据,实线是基于公式 (4) 的拟合数据,误差线在每个数据点的顶部和底部用大写字母表示,(a) 40 nm Ta 在 𝑇= 77 mK。(b) 𝑓 𝑟 = 3.654 在三个不同温度下。(c) 80 nm Ta 在 𝑇= 44 mK 时和 (d) 100 nm Ta 在 𝑇= 40 mK 时。
[2][3]作者介绍了一种锥形缝隙天线和一种对映锥形缝隙天线,通过合并六个以上的谐振来实现 UWB 响应。这种结构有许多几何参数,并且在不同频率下获得的辐射模式也不稳定。Hoods 等人 [4] 提出了一种双平面 UWB 结构,它具有小增益和不均匀的辐射模式。在 [5] 中,作者介绍了一种紧凑型 UWB 天线,其中通过两个半圆来增强带宽。在 [6] 中,通过引入一个带缝隙的附加环形结构来实现 UWB 操作。[7] 中讨论了一种基于混合缝隙馈电网络的 UWB 天线。[8] 中介绍了通过在微带馈电的接地平面上创建 UWB 特性。Shameena 等人 [9] 介绍了一种 CPW 馈电 UWB,其中使用具有许多维参数的阶梯形缝隙来实现 UWB 特性。C Vinisha 等人[10] 介绍了一种电小尺寸 CPW 馈电 UWB,其中使用环形环来获得超宽带宽。S. Nicolaou 等人在 [11] 中讨论了一种 UWB 辐射器,其槽呈指数锥形,尺寸非常大,增益很小。[12] 介绍了一种非均匀辐射、小增益 UWB 偶极天线。它提供了较差且高度失真的脉冲响应。[13] 讨论了一种适用于医学成像应用的定向 UWB,尺寸非常大,辐射方向图不均匀。然而,上述所有天线尺寸都很大或结构复杂