HUBER+SUHNER 太空光子学研讨会 航天工业正在经历一场重大变革,其特点是活跃卫星数量惊人地增加。到 2023 年底,共有 10,000 颗卫星在地球轨道上运行,预计其数量将以每年 40% 的速度增长。随着火箭技术的最新进展,发射成本将降至 <100 美元/公斤,标志着从小众市场转向商业市场。这一发展正在创造前所未有的太空飞行相关商机。光子技术具有小尺寸、高数据速率和成本成熟度(由电信 COTS 驱动)等卓越功能,将为这个即将到来的市场做出重大贡献。我们很高兴邀请您参加由 HUBER+SUHNER 主办的“太空光子学研讨会”。本次活动将作为一个平台,汇集行业领袖,共同探索和利用光子技术在动态太空市场的潜力。在这个未来市场取得成功的关键是抓住机遇并建立合作伙伴关系! - 加入我们,共同探索这个转型时代出现的巨大机遇。让我们共同驾驭航天市场不断变化的动态,并建立战略联盟,充分利用各种可能性。日期 2024 年 4 月 15 日,星期一 地点 HUBER+SUHNER AG, Degersheimerstrasse 14, 9100 Herisau AR 目标群体 技术和业务开发听众 议程 11:30 - 13:00 注册、三明治午餐、HUBER+SUHNER 工厂参观 13:00 - 13:45 学术界和工业界的主题演讲(见下面列出的发言人) 13:45 - 15:45 世界咖啡(轮流小组)主题:“航天器的无源光纤连接”/“太空中的光学传感器”/“有源元件”/“分享开发太空光子产品的经验” 16:00 社交开胃酒 主题演讲者 Lauriane Karlen,CSEM,高级研发工程师 Thomas Paul,HUBER+SUHNER,航空航天副总裁市场经理 [发言人 3 - 待定] 注册 如需注册和了解更多信息,请访问https://www.hubersuhner.com/en/hubersuhner-photonics-in-space-workshop 。 参会人数限制为 40 人。本次会议为在航天市场快速发展的光子技术领域建立联系、交流知识和开展协作提供了一个独特的平台。 不要错过这次参与塑造未来的讨论的机会!我们期待您的参与! 谨致问候, HUBER+SUHNER Matthias Bleibler Thomas Paul 博士 FO 研发副总裁 航空航天市场副总裁
新闻稿 百达翡丽,日内瓦 2021 年 12 月 百达翡丽“高级研究” 表厂为其最重要的专业领域之一——报时表——推出了一项先锋创新。 百达翡丽“高级研究”的工程师们开发出一种全新的全机械声音放大系统,拓展了其报时表的范围。 此极强音“ff”模块由一个灵活悬挂的声音杆和一个由透明蓝宝石水晶玻璃制成的振荡晶片组成。 与传统的三问表相比,无论表壳材质如何,它都能提供清晰的放大声音,具有出色的音质。 这项先锋技术拥有四项专利,体现在 Ref. 5750“高级研究”三问表上,这是一款特别限量版,由 15 只铂金表壳和独特表盘设计的腕表组成。 自公司成立以来,创新精神就一直存在于百达翡丽的 DNA 中。秉承这一不间断的传统,百达翡丽不遗余力地进一步突破制表工艺的极限,走在技术发展的前沿。但百达翡丽认为,只有长期为用户提供质量、精度和可靠性方面的真正附加值,创新才有意义。百达翡丽“高级研究”部门成立于 2005 年,现已并入研发部门,负责在新型材料、技术和概念基础领域开展高端研究,旨在为制表领域开辟全新的视角。为了实现这些目标,百达翡丽建立了独特的能力,召集了最优秀的专家,并为他们提供最新的技术资源,包括计算机模拟所需的仪器。百达翡丽“高级研究”的工程师还与独立的外部研究机构合作,例如瑞士纳沙泰尔电子与微技术中心 (CSEM) 或洛桑联邦理工学院 (EPFL)。自 2005 年以来,百达翡丽“先进研究”部门凭借在 Silinvar® 创新领域的开创性工作脱颖而出。Silinvar® 是一种硅衍生物,具有出色的制表特性(温度补偿、重量轻、无需润滑、防磁等)。与此同时,百达翡丽推出了首款 Silinvar® 擒纵轮(2005 年),随后又推出了 Spiromax® 摆轮游丝(2006 年)、Pulsomax® 擒纵装置(2008 年)、Oscillomax® 组件(2011 年)以及进一步优化的 Spiromax® 摆轮游丝(2017 年)。每一次技术飞跃都伴随着限量版腕表的推出,这些腕表是首批配备创新组件的腕表。与此同时,百达翡丽当前腕表系列的大部分机芯均配备了由 Silinvar ® 制成的 Spiromax® 摆轮游丝。
近年来,已经出现了许多用于捕捉三维环境和物体的传感器系统。除了激光扫描仪和大地测量全站仪外,这里还必须列举立体视觉和基于三角测量的系统。特别是激光扫描仪在速度和准确性方面已成为最先进的技术,能够捕捉数十米大小的物体。激光扫描仪的主要缺点是它们的顺序操作模式。它们逐点测量。几年前,开发了一种功能齐全的新技术,能够同时以高分辨率捕捉环境。所谓的范围成像 (RIM) 或闪光激光雷达相机基于数字成像技术,并具有测量每个像素中相应物体点距离的能力。距离测量基于直接或间接飞行时间原理。由于其并行采集高达视频帧速率,RIM 相机甚至可以捕捉移动物体。就光学依赖性而言,可以得出所捕获场景的 3-D 坐标。距离测量的标称精度为几毫米。如果属性和特性变得稳定且可预测,RIM 可能成为许多应用的首选技术。例如,汽车、机器人和安全系统。标称坐标和测量坐标之间的显著偏差发生在几厘米的范围内。只有深入的研究才能帮助达到这里的理论极限。本论文讨论了影响 RIM 相机测量的几个方面。首先,简要介绍与 RIM 相关的基本技术。除了成像和距离测量方法外,RIM 还区分了两个基本原理。此外,重点放在特定的限制上。在这项工作期间,有三种不同的相机问世:瑞士 CSEM / MESA Imaging 的 SwissRanger SR-2 和 SR-3000,以及后来德国 PMDtec 的 3k-S。这三款相机基于间接飞行时间原理,配备了不同的复杂功能。除了集成的校准和校正功能外,抑制背景照明也是主要功能之一。但是,这些相机仅用于高度发达的演示。根据所需权利要求,对特定应用领域(如汽车或机器人)的适应性可产生专门的属性。对现有相机类型的分析有助于更深入地了解该技术。所分析相机的原始数据精度不超过几厘米。为了研究现有相机的属性,必须开发特殊的实验装置。这项工作的主要部分涉及 RIM 相机组件的研究和校准。通过摄影测量相机校准解决光学系统的几何偏差。根据偏差和统计数据分析距离测量系统。因此,指出了精度和准确度的局限性。除了散射效应的影响外,还讨论了积分时间、发射系统和入射角、目标反射率、外部和内部温度以及最终的线性度和固定模式噪声。此外,还介绍了一种系统校准过程的方法。由于影响参数的复杂性,尚未对各种影响参数的测量数据进行完整的校正。但高度系统的依赖关系预示着未来会出现复杂的校准程序。这项工作有助于理解传感器。
成员: • Orazio Aiello,国立大学。新加坡(SG)• Janne Aikio,大学奥卢大学 (FI) • Johan Alme,卑尔根大学 (NO) • Atila Alvandpour,林雪平大学 (SE) • Paul Annus,Taltech (EE) • Snorre Aunet,NTNU (NO) • Marco Balboni,费拉拉大学 (IT) • Abdullah Baz,Umm Al-Qura 大学 (SA) • Elmars Bekecal,里士满技术大学,里士满大学 (SE) • 隆德大学 (SE) • Claudio Brunelli,诺基亚 (FI) • Luigi Carro,UFRGS (BR) • Mario Casu,都灵理工大学 (IT) • Kun-Chih (Jimmy) Chen,国立中山大学 (TW) • Yong Chen (Nick),清华大学。 (中国) • Hans Jakob Damsgaard,诺基亚(FI) • Patricia Derler,国家仪器(美国) • Peeter Ellervee,Taltech(EE) • Diana Goehringer,德累斯顿工业大学(德国) • Gunnar Gudnason,奥迪康(丹麦) • Xinfei Guo,Mellanox TechnSEologies(美国) • Half-Houston University(美国),阿尔托大学(FI) • Shadi Harb,英特尔,(美国) • Thomas Hollstein,Taltech(EE) • Heikki Hurskainen,诺基亚(FI) • Waqar Hussain,Nordic Semiconductors(NO) • Maksim Jenihhin,Taltech(EE) • Gert Jervan,Taltech(EE) • Ted Johan SE,Gulson University(CA)nar Kjeldsberg,NTNU(NO) • Kristian Gjertsen Kjelgård,Univ.奥斯陆(挪威) • Peter Koch,奥尔堡大学(丹麦) • Selcuk Köse,大学罗切斯特 (美国) • Marko Kosunen,阿尔托大学 (FI) • Olli-Erkki Kursu,大学。奥卢 (FI) • Kimmo Kuusilinna,Nosteco (FI) • Vesa Lahtinen,诺基亚 (FI) • Yannick Le Moullec,Taltech (EE) • Pasi Liljeberg,图尔库大学 (FI) • Liang Liu,隆德大学 (SE) • Farshad Moradi,奥胡斯大学 (DK) • Ilkka Nissinen,大学。奥卢 (FI) • Sajjad Nouri (DE) • Jari Nurmi,特拉维夫大学 (FI) • Vojin G. Oklobdzija,加州大学戴维斯分校 (美国) • Milica Orlandić,挪威科技大学 (NO) • Dmitry Osipov,ITEM (DE) • Vassilis Paliouras,大学。帕特雷 (GR) • Darshika G. Perera,UCCS(美国) • Ernesto Pérez,CSEM(瑞士) • Luca Pezzarossa,DTU(丹麦) • Sebastian Pillement,Univ.南特大学 (FR) • Juha Plosila,图尔库大学 (FI) • Timo Rahkonen,奥卢大学 (FI) • Toomas Rang,Taltech (EE) • Jussi Ryynänen,阿尔托大学 (FI) • Ketil Røed,大学。奥斯陆(挪威) • Juha Röning,大学奥卢大学(FI) • Alireza Saberkari,林雪平大学(SE) • Martin Schoeberl,丹麦技术大学(DK) • Shahrian Shahabuddin,俄克拉荷马州立大学(美国) • Ibraheem Shayea,伊斯坦布尔技术大学。 (TR) • Ming Shen,奥尔堡大学(DK) • Olli Silvén,奥卢大学(FI) • Henrik Sjöland,隆德大学(SE) • Kalle Tammemäe,Taltech(EE) • Jing Tian,南京大学(CN) • Kjetil Ullaland,卑尔根大学(NO) • Vishnu Unnikrishnan,坦佩雷大学。 (FI) • Boris Vaisband,麦吉尔大学(CA) • Lan-Da Van,国立交通大学(TW) • 马克·维斯特巴卡 (Mark Vesterbacka),林雪平大学(SE) • Seppo Virtanen,图尔库大学 (FI) • Upasna Vishnoi,Marvell Semiconductor (美国) • Roshan Weerasekera,西英格兰大学 (英国) • Avinash Yadav,Nvidia (美国) • Trond Ytterdal,挪威科技大学 (NO) • Milad Zamani,奥胡斯大学 (DK),• Yuteng ZhouWPI(美国)• Viktor Åberg,隆德大学(瑞典)• Johnny Öberg,KTH(瑞典)
#businesswithtouch | 2nd Cycle FlexCo | 3E | 3S 瑞士太阳能解决方案 | 3SUN | 阿尔托大学 | 奥胡斯大学 | ABO Wind | ACMM 集团 | Acondicionamiento Tarrasense (Leitat) | Advanced Silicon Group | AEA - 奥地利能源署 | AESOLAR | 艾伏新能源科技(上海)有限公司 | AIKO Solar | AIST | AIT | Amarenco | AMIRES,商业创新管理学院 | ANU | Apollo Power | 未来技术应用研究所 | 应用太阳能专业知识 - ASE | arconsol | 亚利桑那州立大学 | ASCR | ATAMOSTEC | 阿特拉斯·科普柯意大利 | Atonometrics | Atotech | 奥格斯堡大学 | 奥地利技术平台光伏 | Autarq | Avalon ST | Avancis | Axiom 印度 | b.network | Band Gap | BayWa re | 贝克勒尔研究所 | Belanz | Belectric | 柏林应用技术大学 | Betsa | Better Energy | Better Natural | bifa Umweltinstitut | Bioenergie Mureck | Biosphere Solar | BITS Pilani | Blue Investment Advisors | BlueVolt | BMI Deutschland | Borealis Polymers | Bosch Rexroth | Bottero. | Bravosolar | BUAS | Buhck ReEnergy | Bundesverband Photovoltaic Austria | Caelux Corporation | Casa dos Ventos | 加泰罗尼亚能源研究所 | 卡塔尼亚大学 | CE Cell Engineering | CEA / INES | CEI - COMITATO ELETTROTECNICO ITALIANO | CENER | Cennergi (Pty) | 物理科学与技术中心 | 科学、技术和政策研究中心 | 吉布提研究中心 | centrotherm international | CERTH | CF Energy | 查尔姆斯理工大学 | 中国科学院 | 正泰太阳能欧洲 | 全南国立大学 | 忠北国立大学 |忠北科技园 | CIEMAT | CINaM | CINEA | 维也纳市 | Climate Copy | CNRS/GeePs | Coatema 涂装机械 | 科罗拉多矿业学院 | colourFIELD tell-a-vision | 马德里康普顿斯大学 | Consorzio Futuro in Ricerca | COSMOTAICS | Coveme | Cretschmar | CRM | CSEM | CSIR - 国家跨学科科学技术研究所 | CSIRO 能源 | CSTB | Cubico 可持续投资 | 布拉格捷克技术大学 | 大日本印刷 | 达拉纳大学 | Daniel Lipschits 建筑和公用基础设施 | DAS SOLAR | Delfos 能源 | Desert Technologies | DESTEC - 比萨大学 | 德国太阳能协会柏林勃兰登堡州协会 | DEWA | DGIST | Die Ökoenergie | Dipl.-Ing. Johannes Oberlehner | DKEM | DNV | Dokuz Eylul 大学 |东义大学 | Dornier Suntrace | 比利时陶氏有机硅 | DOWA 控股(上海) | 丹麦技术大学 | 昆山杜克大学 | DWR eco | Echoenergia | ECM Greentech | E-Control | Ecoprogetti | Eddes Sustainability Solutions | Eder PTFE Solutions Sp | EDF | EDP Sciences | 爱琴大学 | ehoch2 能源工程 | 埃因霍温理工大学 | EKO Instruments Europe | Electric Life | Elia SA | EMD International | EMPA | ENEA | Enerbim | 能源管理局中华民国经济部 | 能源光子研究中心 | 能源观察 | Energy3000 solar | Enerland 集团 | Enertis Applus+ | ENGIE | Engreen | ENI PLENITUDE | Enlog Europe | Enmova | ENOE SOLAIRE | Enpal | EnPV | ENTEGRO ENERJİ SİSTEMLERİ SANAYİ VE TİCARET LİMİTED ŞİRKETİ | EON | EPFL | EPRI | Equinor | 设备供应商 | ESMC | Estudio Radio / Transicion E | ETA - Florence Renewable Energies | Eternal Sun | ETRI | Eurac Research | Europe Altek | 欧盟委员会 DG | 欧盟委员会 JRC | 欧洲航天局 | Evergy Engineering | ewz | exateq | 塞姆拉利亚理学院、卡迪阿亚德大学 | 远东大学 | 费德里科圣玛丽亚理工大学 | 亚琛应用技术大学 | 维也纳应用技术大学 | FH-OOE | First Solar |福禄克| Fluxim|于利希研究中心 |富腾 |弗劳恩霍夫 IMWS |弗劳恩霍夫 CSP |弗劳恩霍夫 FEP |弗劳恩霍夫 IEE |弗劳恩霍夫 ISE |弗劳恩霍夫 IST |自由记者|弗里德里希-亚历山大大学埃尔兰根-纽伦堡 |伏能士国际|福岛可再生能源研究所、日本产业技术综合研究所|加泰罗尼亚能源研究基金会|未来太阳 | g2v光学| GAF能源|佳明 |吉利控股集团|吉尔特·帕尔默斯 |格哈德·穆特 |德国航空航天中心|媒体 | GfE 弗雷马 |岐阜大学|德国国际合作机构 |格拉斯顿瑞士 | Goneo新能源欧洲|格拉茨科技大学|绿色能源园|绿马咨询|格林策巴赫 ENVELON |格雷特索尔 |危地马拉太阳能集团|环球网 |哈贝马克斯 |海开传媒|哈洛松|哈尔姆电子|哈马德·本·哈利法大学|韩华 Q CELLS |哈瑟尔特大学|海因里希·科普 |柏林亥姆霍兹中心 |横店集团东磁磁业|贺利氏 |赫斯普尔 |日立|香港航空 |安哈尔特大学 |安斯巴赫应用技术大学 |霍金普拉奇 |霍洛索利斯 |霍利伏特 |弗莱福兰地平线 |湖西大学| HS太阳能| HTSW | HTW 柏林 |华为技术杜塞尔多夫有限公司|惠州联成电子|胡诺瓦建造|现代格洛维斯 |伊布·沃格特 | IBC太阳能| Iberdrola Renovables Italia 水疗中心 |伊本佐尔大学|肠易激综合征 |伊克里亚 |国际能源署PVPS | I-EM SrL| IFE 能源技术研究所 | 印度孟买理工学院 | 印度德里理工学院 | 印度克勒格普尔理工学院 | IKAROS SOLAR | imec vzw | 印度科学研究所 | Ingenieurbüro Muntwyler | 仁荷大学 | InnoEnergy | 里昂国立应用科学学院 | 纳米科学技术研究所 | INTERENERGO | 国际金融公司(世界银行集团) | 国际伊比利亚纳米技术实验室 | 国际可再生能源设备回收协会 | IP FAB | IPU | IPU P/S | IPVF | IREC | ISC 康斯坦茨 | 伊斯基亚咨询公司 | ISFH 太阳能研究所 | ITER | ITRI | JAIST | JH Energy | 江苏祥环科技 | 晶科能源 | JLN Solar | JNTP | Joanneum Research | 约翰内斯开普勒大学 | JUWI | KAIST | KalyonPV | KANC | Kaneka | 卡尔斯鲁厄理工学院 | KCL 韩国认证实验室 | KETI | KFUPM | 哈利法大学 | Khnp | KICET | 基尔研究所 | KIER | KIMS | 阿卜杜拉国王原子能与可再生能源城 | KIST | KITECH | Kiwa PI Berlin | Klima- und Energiefonds | Koc University | Kontron AIS | 韩国航空大学 | 韩国电气安全公司 | 韩国电工技术研究院 | 韩国能源技术研究院 (KENTECH) | 韩国工业技术研究院 | 韩国国立交通大学 | 韩国光子技术研究院 | 韩国水资源 | KRICT | KTL 韩国测试实验室 | 鲁汶大学 | 京瓷 | LayTec | Leader Technology |