摘要细胞质男性不育(CMS)是一种特征,它会产生由线粒体和核基因之间相互作用引起的非功能性花粉。在中国武器(CW)型CMS,CWA,大米(Oryza sativa L.)中,其线粒体增强了核基因逆行调节的男性不育(RMS)的表达,从而导致花粉流产。生育能力在恢复器线中的表达降低时恢复。RMS的表达由位于RMS起始密码子上游的启动子区域的单核苷酸多态性(SNP)控制。然而,在该区域的反向链中预测了编码含有蛋白质的五肽重复域的另一个基因PPR2,并且SNP在CWR中创建了过早的终止密码子。证明RMS直接参与了CW-CMS的生育能力,我们使用CRISPR/CAS9将突变引入了RMS和PPR2。生育力。生育恢复。我们的结果表明,PPR2不负责生育能力的恢复,并且通过降低RMS的表达来恢复生育能力,从而为我们提供了一种新的人工生育修复剂,以供农艺使用。
摘要:二十多年来,转基因作物(GM)一直受到严格监管,转基因作物通过物种间的 DNA 转移进行改良。如今,基因组编辑 (GE) 可以实现一系列 DNA 改变,从单个碱基对的改变到使用定点核酸酶 (SDN) 进行精确基因插入。过去的监管是根据避免对人类健康和环境造成潜在风险的预防原则制定的,这些监管是基于资金充足且情绪化的反转基因运动所煽动的恐惧。这些恐惧忽视了转基因作物在过去 25 年的安全记录以及转基因对作物生产力、抗病虫害能力和环境的益处。GE 正在取代 GM,需要向公众宣传其益处及其应对气候变化对作物的挑战的潜力。到 2050 年,世界人口将超过 90 亿,世界二氧化碳水平目前超过 400 ppm,而工业化前为 280 ppm,预计到 2050 年全球变暖将达到 1.5 ◦ C,农作物环境压力将更大。所需的非生物和生物压力耐受性可以通过转基因从农作物野生亲属 (CWR) 渗入到家养农作物中。需要取消限制性法规,以促进转基因技术在澳大利亚和世界范围内实现可持续农业。
摘要 菊花是全球销量最高的四种切花之一。基因编辑是研究基因功能的重要工具,但目前尚无高效、精准的菊花基因组编辑工具。本研究建立了CRISPR/Cas9介导的基因编辑系统,以探索基因功能并提高菊花育种水平。我们利用Golden Gate Assembly系统构建了CRISPR/Cas9载体,用于双靶向Phytoene Dehydro(PDS)基因。为了测试sgRNA设计的准确性,我们最初使用了植物中的瞬时CRISPR/Cas9编辑(TCEP)方法。经瞬时转染的9株植物中靶基因表达量为正常水平的19.1%–52%,证实了靶基因敲除的可行性。我们进行了稳定转化;PCR 和靶位测序表明,获得的八株白化植物中有四株在靶位点进行了稳定编辑。我们通过靶向另一个基因 CmTGA1 进一步评估了该系统的编辑效率,之所以选择该基因,是因为它在菊花白锈病 (CWR) 疾病进展中具有潜在重要性。我们的数据表明,结合瞬时和稳定转化可提高基因组定点编辑的效率和成功率。我们在此建立的有效、可遗传的 CRISPR/Cas9 介导的基因组编辑系统为 C 的功能基因研究和遗传改良奠定了基础。菊花。
作物野生亲戚(CWRS)与驯养的作物(农业园艺,药物和芳香,观赏性和林业物种)表现出密切的关系,并形成了农作物基因库的一部分,具有基因交换的潜力。大量的CWR是潜在的捐助者,但受到驯养作物的关注少。cwrs也遭受了遗传侵蚀,导致遗传多样性严重丧失(Maxted等,2006; Von Wettberg等,2020)。驱动遗传多样性损失的因素已分为对进化力作用的远程驱动因素和近端驱动因素:突变,迁移/基因流,遗传漂移和选择(Khoury等,2022)。在此研究主题中,Trainin等人。从解剖学的角度记录了参与选择非色的光合作用性状的进化力,与商业杏仁相比(P. Dulcis(Mill。D. A. Webb)。P.Arabica的茎有利于STEM光合作用,以通过多种策略获得额外的碳增益。Higher stem photosynthesis in P. arabica than in P. dulcis is attributed to selective anatomical features such as the presence of a high density of sunken stomata in their stems, a chloroplast-rich mesophyll-like parenchymatous cell layer, higher chlorophyll content, better chlorophyll fl uorescence and quenching parameters, and its ability to ef fi ciently regulate water loss at温度升高。
•查尔斯·泰(Charles Tsai),电力资产•CW TSE,环境局,香港特殊行政区政府•Daphne Ngar-Yin Mah,香港浸信会大学•香港科学与技术大学戴维斯·布德哈特(Davis Bookhart)环境科学•吉姆·泰勒(Jim Taylor),珍妮(Jeanne NG),托马斯·卢伊(Thomas Lui),CLP洪孔有限公司•新加坡国家发展部宜居城市中心凯文·胡苏(Kevin Hsu UK-CHINA(广东)CCUS中心•小米杨,中国石油和天然气气候投资•元X Yuan,Rajat Shrestha,Ran Wei,Su Song,Tian Yu,Wenyi XI,Zhe Liu,Bokai Qi(实习生),Weizhe MA(实习生),Wenjing MA(实习生),Yanging Qiao(实习生)
图 1 利用植物遗传资源改良作物的有用特性。植物遗传资源(具有当前或潜在价值的植物遗传材料)包括作物地方品种——遗传上多样化的作物品种,是传统种子保存系统而非现代植物育种的产物,通常与当地适应性以及边缘农业环境中的传统农业实践有关(Maxted 等人,2020 年);作物野生近缘种(CWR)——与作物关系相对密切的野生物种,可以使用常规或基因工程技术与作物杂交,将野生物种的理想特性引入作物;以及未充分利用的作物。传统上,野生植物通过随意选择和谱系育种进行驯化和改良。用于表征育种系的现代技术包括基因组大小关联研究 (GWAS) 和自动表型分析。加速育种周期的方法包括标记辅助育种——识别和使用与促进有利性状的等位基因相关的遗传标记,以便在比表型筛选成熟植物更年轻、成本更低的情况下从杂交中识别合适的后代;基因组选择——从全基因组扫描遗传变异中进行定量统计预测;以及基因改造——越来越多地使用 CRISPR/Cas 技术进行
图 1 利用植物遗传资源改良作物的有用特性。植物遗传资源(具有当前或潜在价值的植物遗传材料)包括作物地方品种——遗传上多样化的作物品种,是传统种子保存系统而非现代植物育种的产物,通常与当地适应性以及边缘农业环境中的传统农业实践有关(Maxted 等人,2020 年);作物野生近缘种(CWR)——与作物关系相对密切的野生物种,可以使用常规或基因工程技术与作物杂交,将野生物种的理想特性引入作物;以及未充分利用的作物。传统上,野生植物通过随意选择和谱系育种进行驯化和改良。用于表征育种系的现代技术包括基因组大小关联研究 (GWAS) 和自动表型分析。加速育种周期的方法包括标记辅助育种——识别和使用与促进有利性状的等位基因相关的遗传标记,以便在比表型筛选成熟植物更年轻、成本更低的情况下从杂交中识别合适的后代;基因组选择——从全基因组扫描遗传变异中进行定量统计预测;以及基因改造——越来越多地使用 CRISPR/Cas 技术进行
一般而言,作物的起源中心与其最大程度的多样性有关。然而,也应注意,作物在驯化和栽培的过程中可能会形成多个多样性中心(Harlan,1971;Harlan,1975)。提出的驯化过程长期多中心模型特别适用于栽培作物,而不适用于其野生近缘种,因为栽培作物受到的人工选择压力较大,而野生近缘种只受到自然选择压力(Allaby 等人,2008)。这反映在一种作物的不同种质种质中多种性状以阵列模式共存于多个位置,每个种质都拥有不同的感兴趣性状组合(Esquinas-Alca zar,2005)。例如,为了表示水稻的谷粒大小和颜色、植株结构、种子落粒性(但适合脱粒)、各种非生物和生物胁迫耐受性、糯粒、开花时间和生命周期(短、中、长周期)等性状的完全变异性,我们需要大量的基因型(Izawa,2022 年;Shang 等人,2022 年)。如果我们将驯化过程中选择压力的结果以性状与变异性的形式列出,每个细胞包含适当的基因型,我们将获得一系列代表不同表型性状及其内部变异性的种质。这将揭示,如果特定基因型丢失,作物植物更容易受到遗传侵蚀(与作物野生近缘种 CWR 相比)。这是因为尽管存在自然选择压力,但农作物野生亲缘植物由于缺乏人工选择压力而未能多样化(在排列模式上)。保护这些珍贵的农作物遗传资源和农作物野生亲缘植物对于通过持续的农作物改良实现粮食安全至关重要。
蒙特塞拉特可再生能源项目标志着政府和当地公用事业公司采取行动 3 月 24 日星期五,蒙特塞拉特政府通过通信、工程和劳工部 (MCWL) 和蒙特塞拉特公用事业有限公司 (MUL) 发布了一份资格要求,要求有意者具备 1 兆瓦 (MW) 太阳能光伏 (PV) 和电池储能项目的工程、采购和建设资格。该太阳能项目是去年发布的新技术国家能源政策的一部分,该政策名为“变革的力量 - 蒙特塞拉特能源政策 2016-2030 (MEP 2016-2030)”。该招标代表两个太阳能项目阶段中的第一阶段。第一阶段的太阳能容量为 250 千瓦 (kW)。竣工后,第一个太阳能项目将产生当前峰值负荷或所需最大电力的 11%。第二阶段将于 2018 年初开始,包括额外的 750kW 太阳能电池板和相关电池储存装置。 如需了解更多信息或参与项目投标,请访问政府网站 www.gov.ms/tenders/ 的招标栏目。 媒体垂询,请联系 klau@carbonwarroom.com 关于蒙特塞拉特公用事业有限公司 蒙特塞拉特公用事业有限公司由现有的电力(Monlec)和水务(MWA)公用事业公司合并而成。 合并完成后,MUL 收购了前身组织的所有资产、负债、职责和特权,并根据新立法(公用事业法)开始运营。 因此,MUL 成为前身组织蒙特塞拉特电力服务有限公司和蒙特塞拉特水务局的伞形公司,继续负责蒙特塞拉特的电力和水务。关于落基山研究所和碳战室 落基山研究所 (RMI) 是一家成立于 1982 年的独立非营利组织,致力于改变全球能源使用方式,创造清洁、繁荣和安全的低碳未来。它与企业、社区、机构和企业家合作,加速采用以市场为基础的解决方案,以经济高效的方式从化石燃料转向高效和可再生能源。2014 年,RMI 与碳战室 (CWR) 合并,后者以企业为主导的市场干预措施推动低碳经济发展。合并后的组织在科罗拉多州巴萨尔特和博尔德、纽约市、华盛顿特区和北京设有办事处。
粮食和农业植物遗传资源 (PGRFA) 是指任何植物来源的遗传材料,包括生殖和无性繁殖材料,含有对粮食和农业具有实际或潜在价值的功能性遗传单位 (FAO, 2009)。因此,粮食和农业植物遗传资源包括 (i) 栽培作物品种,即目前使用的栽培品种和新开发的品种;(ii) 过时的栽培品种;(iii) 原始栽培品种 (地方品种) 和农民品种;(iv) 作物野生近缘种 (CWR),即与栽培品种相关的野生种群;(v) 野生食用植物;(vi) 杂草;以及 (vii) 育种和研究材料或特殊遗传种群(包括优良和当前育种者的品系和突变体)。虽然这些植物的脱氧核酸和其他遗传材料也被视为粮食和农业植物遗传资源,但该术语通常用于指整株植物及其繁殖体。因此,粮食和农业植物遗传资源通常在野外、农民田地和实验田中发现。它们还在基因库中得到保护,即以种质种质的形式进行迁地保护,也在它们的自然栖息地中得到保护,无论是否有刻意的保护干预。随着世界人口不断增加、气候变化的毁灭性影响、农业水资源和可耕地的减少、冲突、流行病和无数社会经济驱动因素,粮食不安全和营养不良问题在过去几年中日益恶化(粮农组织,2018、2019、2020、2021、2022 年)。健康营养饮食越来越难以负担,而越来越多的人无法获得足够的食物。不断发展的新冠疫情和俄罗斯联邦-乌克兰冲突是最近发生的两起全球事件,加剧了粮食不安全和营养不良问题,尤其是在发展中国家南部。事实上,由于粮食生产水平落后于预测,无法满足日益增长的粮食需求,消除饥饿和营养不良的努力可能无法如期实现联合国可持续发展目标(联合国大会,2015 年)中承诺的 2030 年目标。考虑到 80% 的食物都是植物性的,粮食和农业植物遗传资源对于实现粮食安全和营养的努力至关重要。1.2 粮食和农业植物遗传资源保护和利用的多边主义