摘要:这项研究调查了延伸谱β-内酰胺酶(ESBL)的存在,分布和抗菌抗性谱,在意大利北部的乳制品群中生产大肠杆菌。收集了临床健康的犊牛,母亲和接受乳腺炎处理的奶牛的粪便,以及水,环境样品和废物牛奶的粪便,并在Chromagar TM ESBL板上接受了细菌培养。进行了问卷调查以识别风险因素。通过MALDI-TOF MS将分离株鉴定为大肠杆菌,并进行双盘协同测试(DDST)和最小抑制浓度(MIC)测定。结果,从37个(75.67%)小牛的28个粪便中分离出ESBL大肠杆菌,3(66.67%)处理过的奶牛的粪便,14个(57.15%)环境样本中的8个(57.15%)和废牛奶。所有ESBL分离株均显示出多种电阻,并被归类为抗多药(MDR)。确定了ESBL大肠杆菌选择和扩散的几种危险因素,包括缺乏对小牛喂养和住房设备的常规清洁,将废牛奶施用到雄性小牛和毛毯干牛治疗。总而言之,这项研究强调了大多数奶牛粪便中MDR,ESBL大肠杆菌的存在及其与不同样品来源的关联。因此,增加了抗生素的审慎使用,采用适当的农场卫生和生物安全措施也可能有助于防止Esbl E. Coli在牧群中的传播和传播。
被动免疫转移(TPI)是在新生小牛中获得良好免疫状态的关键。传统的科学方法检查了TPI失败的风险因素,但是实现了出色的被动免疫转移的好处是有充分认可的,这证明了对特定侵害因素的仔细研究。但是,关于与出色的TPI有关的条件的信息很少,这可能与避免失败的情况相差。因此,这项工作的目的是检测确定无源免疫转移的因素。从2022年4月到7月,研究了来自六个国家的108个欧洲农场的1,041辆犊牛。用折射率间接测量犊牛中的初乳质量和被动免疫水平。记录了初乳管理,大坝,小牛和农场状况的数据。建立了贫穷,公平和出色的TPI的分类。混合效应多项式回归建模是在动物层面上实施的,国家和牛群是随机因素。初乳变量的中位数为3 l的体积,质量为24.4%,出生后2小时的给药时间。在优秀类别中,只有一个国家的犊牛占犊牛的40%。平均因素影响优异的TPI是施用初乳的体积和质量。总而言之,尽管欧洲的大多数农场都管理和管理过足够的初乳,但有一些方面需要改进,以实现优秀类别中超过40%的犊牛。这些关键因素与预防TPI失败的关键因素一致,尽管应根据研究的局限性考虑这一结果。
♦ 优先为牛接种疫苗——由于病毒感染阈值低,牛很容易被感染。如果可以通过预防措施将感染牛的数量降至最低,和/或降低病毒在暴露时的传播,那么其他高危物种就可以免于接种疫苗,并通过生物安全得到保护。在疫苗供应有限的情况下,这种方法尤其值得推荐。♦ 优先为小牛接种疫苗——小牛特别脆弱,不太可能在感染后存活下来,而成年牛通常不会出现严重的临床症状。这在饲养奶牛后备母牛和公牛犊以生产牛肉的牛犊牧场等情况下尤其重要。♦ 优先考虑奶牛场——饲养场和母牛犊场更有可能从口蹄疫感染中恢复过来。此外,恢复的奶牛很少能达到感染前的产奶水平。倾倒受感染奶牛场的牛奶极具挑战性,而且不是资源的有效利用。由于奶业利润率低,这会导致财务灾难。受感染的奶牛场也使响应人员的工作变得更加复杂,因为不仅需要通过减少和处理来管理牛群,而且还需要倾倒牛奶,这在加利福尼亚州等有严格环境保护署规定的州尤其具有挑战性。
先进毛伊光学和空间监视技术会议毛伊岛,夏威夷;2022 年 9 月 27-30 日增强南半球深空双基地雷达与小型光学系统,以探测近地和其他空间物体。作者:Ed Kruzins 1,2、Timothy Bateman 1、Lance Benner 3 Russell Boyce 1 Melrose Brown 1、Sam Darwell 1、Phil Edwards 2、Lauren Elizabeth-Glina 1、Jon Giorgini 3、Shinji Horiuchi 2、Andrew Lambert 1、Joe Lazio 3、Guifre Molera Calves 4、Edwin Peters 1、Chris Phillips 2、Jamie Stevens 2、Jai Vennick 1 1 新南威尔士大学工程与信息技术学院,堪培拉空间。2 联邦科学工业研究组织。 3 加州理工学院喷气推进实验室。4 塔斯马尼亚大学摘要
迫切需要改善英国商业奶牛场起源的犊牛的健康和福利。该人群中疾病的发生是其环境之间相互作用,暴露于病原体和免疫力之间的结果。关于后者,由于牛胎盘的结构,免疫细胞(包括抗体)在怀孕期间无法从母亲转到小牛。小牛是没有功能齐全的免疫系统的诞生,并且依赖于吸收其母亲产生的第一牛奶中的抗体,包括抗乳(Colostrum)。这些免疫成分提供了保护或“被动免疫”,直到小牛自己的免疫系统功能完全正常。如果这不足,小牛将面临更大的风险,屈服于疾病,直到能够产生自己的抗体,从大约5-6周大。最近在一项位于美国的大型奶牛群的研究中证明了这一点。作者证明,与具有出色的被动免疫力水平相比,较低的值与腹泻和肺炎的风险更大有关。这非常重要,因为在英国乳制品群中,被动免疫的转移不足很普遍,超过20%的犊牛被动免疫转移差。
3 中和疫苗病毒的母源抗体也可能抑制疫苗效力,阻止抗体反应的诱导,但不会阻止 T 细胞反应的诱导。4、5 在同时接种 MLV 疫苗和疫苗后观察到了第三种类型的疫苗干扰。然而,这种疫苗相互作用各不相同,从对抗体反应的轻微影响(对疾病保护没有显著影响)到对免疫反应和疾病保护有显著影响。6、7 因此,在同时接种 2 种或 2 种以上疫苗时必须考虑疫苗干扰。虽然已经针对肠外接种解决了这一问题,但关于同时接种在相同或相邻粘膜部位复制的 2 种 MLV 疫苗时疫苗干扰的信息很少。8 鼻内 (IN) 疫苗接种已被用于新生犊牛,作为一种有效的策略,可以规避母源抗体对疫苗的干扰,并针对上呼吸道 (URT) 快速发育的粘膜免疫系统。 9、10此外,给新生犊牛接种IN疫苗可诱导长期免疫记忆,在加强疫苗接种后可快速诱导保护性免疫。11当只有少量IN疫苗可用于犊牛时,无需调查在接种多种IN疫苗时可能出现的疫苗干扰。然而,用于犊牛的新型IN疫苗不断被开发出来,这就引发了一个问题:如果同时接种多种IN疫苗,是否会发生疫苗干扰。本研究调查了在给2周龄以下的犊牛同时接种2种MLV疫苗后是否会发生疫苗干扰。疫苗干扰的一种可能机制是,2种MLV疫苗在相同或相邻的粘膜部位复制,一种病毒的复制会干扰第二种病毒的复制。 8 目前的 MLV 疫苗同时含有 BHV-1 和牛副流感病毒 3 (PI-3),可诱导新生犊牛上皮内 (URT) 局部产生干扰素 (IFN)。12 BHV-1 感染引起的 IFN 反应与整个 URT 中抗病毒基因表达增加有关,在 48 至 72 小时内,当犊牛受到毒性 BHV-1 攻击时,这种先天免疫反应可以减少病毒复制。13、14 因此,含有 BHV-1 和 PI-3 成分的 MLV 疫苗如果同时注射给药,可能会抑制第二种疫苗病毒的复制,而这种病毒也会在 URT 中复制。牛冠状病毒 (BC) 既与牛的肠道感染有关,也与呼吸道感染有关,市场上有口服或注射给药的减毒活 BC 疫苗,可用于预防新生犊牛腹泻。15 有新证据表明,BC 可能在其他呼吸道病毒感染的背景下发挥呼吸道病原体的作用,这为在新生犊牛中同时接种 BC 疫苗和针对病毒性呼吸道病原体的多价 MLV 疫苗提供了理论依据。16–18 干扰素可抑制 BC 的复制,并且该病毒已发展出抑制受感染细胞内 IFN 产生和信号传导的机制。19 如果
肝发育和免疫功能的机制。使用加权基因共表达网络分析(WGCNA),我们分析了10天(n = 3),2个月(n = 10),6个月(n = 6)和10个月(n = 10)hanwoo犊牛的肝样品,以鉴定生长阶段的基因模块。我们确定了与免疫反应,代谢过程和细胞外基质组织有关的重要基因表达模式,尤其是在关键发育阶段。这些发现表明,肝功能的动态转移,尤其是早期的免疫调节,这是由于免疫相关的HUB基因DOCK2的参与而强调的,并且随着犊牛成熟而增强了代谢活性。这些结果有助于了解肝脏特异性发育和