(向佛罗里达空军国民警卫队开放全州范围的职位,有委任机会,有交叉训练机会)最高授权等级:(O1-O3)单位:114 EWS,卡纳维拉尔角 SFS,佛罗里达州职责状态:这是一个演习状态警卫 (DSG) 职位,不是全职工作。申请人应每年满足所有单位训练大会和年度训练要求。专业摘要:作为美国空军和佛罗里达空军国民警卫队的军官领导飞行员。领导机组人员的行动并使用太空和反太空系统在有争议、退化和作战受限的环境中提供联合部队优势。这些系统包括四大作战功能:轨道战 (OW)、空间电磁 (SEW)、太空战斗管理 (SBM) 和太空进入和维持 (S&AS)。执行主要作战职能以支持和保卫美国及其盟军。担任太空作战顾问。相关国防部职业组:220700。职责和责任:领导组织、培训和装备太空作战人员的努力,以进行轨道战、太空电磁战、太空战斗管理以及太空进入和维持活动,以实现和保持美国太空优势,支持国防优先事项。为系统和设施的作战使用制定未来计划、要求、概念、指令和演习。建立组织结构,确定支持任务区域所需的人员。为所有系统建立培训要求和性能标准。建议人员分配的优先事项。协调太空行动。与国家和国际航天机构协调支持主要作战功能的太空活动。这些包括但不限于卫星发射、太空预警、跟踪、控制和编目活动。与空间系统机构协调空间系统网络;发射和射程控制操作接口;以及数学轨道分析方法活动。关联传感器和 C2 设施之间的信息流和技术交换。就进攻和防御部队满足作战要求的能力以及作战效能、战备、组织和训练等问题向指挥官和参谋提供建议。协调作战活动、计划和方案,以确保在准备作战命令和完成指定任务时拥有足够的资源。计划、组织和指挥太空作战方案。指挥单位太空作战活动。审查指挥任务的优先事项和具体目标。根据作战要求和资源指导预算估算和财务计划的准备和管理。观察、
本指南介绍了 Delta IV 发射系统,包括其历史、性能能力和有效载荷环境。此外,还讨论了发射设施、操作和任务集成,以及有效载荷机械和电气接口。还定义了与准备和进行发射相关的文档和程序要求。本文描述的 Delta IV 配置是我们可靠的 Delta 系列的最新发展,旨在为客户提供可靠的太空访问。在超过五十年的使用中,Delta 发射系统通过进化的设计升级取得了成功,以满足用户群体日益增长的需求,同时保持了高可靠性。Delta IV 运载火箭可以根据任务要求从美国大陆的两个发射场之一发射 - 佛罗里达州的东部靶场 (ER) 和加利福尼亚州的西部靶场 (WR)。我们的 ER 太空发射中心 (SLC) 指定为 SLC-37,位于卡纳维拉尔角空军基地 (CCAFS),用于地球同步转移轨道 (GTO) 任务以及需要低倾角和中倾角轨道的任务,而我们位于范登堡空军基地 (VAFB) 的 WR 的 SLC-6 通常用于高倾角轨道任务。两个发射中心均已全面投入运营。根据卫星最终用户客户是美国政府还是商业实体,客户将分别与联合发射服务公司 (ULS) 或波音发射服务公司 (BLS) 签订发射服务合同。ULS 是所有美国政府客户新业务活动的单一联系点。ULS 使用 Atlas V、Delta II 和 Delta IV 系列运载火箭提供全方位服务发射解决方案。ULS 组织为客户提供支持,该组织由知识渊博的技术和管理人员组成,他们致力于开放沟通并响应所有客户需求。ULS 对所有 Atlas 和 Delta 美国政府客户机会负有最终责任、权力和义务。这包括开发满足客户需求的独特任务发射解决方案,以及为客户提供所选发射服务的发射服务协议。BLS 是所有商业客户新业务活动的单一联系点,与 ULS 一样,在 Delta II 或 Delta IV 运载火箭上提供全方位服务发射解决方案。虽然客户将直接与 BLS 交互,但联合发射联盟 (ULA) 将向 BLS 提供所有技术服务。ULS、BLS 和 ULA 项目办公室共同努力,确保充分协调所有客户技术要求。ULA 负责 Delta IV 系统的开发、生产、集成、测试、任务集成和发射。
外面很黑,而且越来越黑。鸟儿栖息,汽车前灯亮着,但这是春天的早晨 09:30……2015 年 3 月 20 日星期五,北欧出现了令人惊叹的日偏食。这深刻地提醒我们太阳系的力量和威严。也许命运注定了,这期《航空测试国际》杂志将独家采访朱莉·克莱默·怀特,她是深太阳系载人猎户座项目的高级工程师。2014 年 12 月 5 日,猎户座飞船搭载德尔塔 IV 重型火箭从卡纳维拉尔角发射升空:这是一次绕地飞行 2 圈、持续 4 小时的飞行,测试了许多对安全至关重要的系统,包括发射和高速再入系统,如航空电子设备、姿态控制、降落伞和隔热罩。未来,猎户座飞船将搭载美国宇航局的新型重型火箭太空发射系统发射。这次试飞标志着太空旅行的新纪元。这表明了迈出这一步的极其重要的决心。“我是在 1985 年挑战者号航天飞机悲剧的阴影下加入 NASA 的,”Kramer 说。“我亲眼目睹了人们致力于解决当天出现的问题并确保不再发生这种事情的决心。从那时起,对 NASA 努力实现的目标(工程卓越和诚信)的热情成为了我所做的一切的试金石。我知道这些人生教训并不是 NASA 独有的。但要具备这些价值观,并注重团队合作和个人
NRO 与太空军合作发射 SILENTBARKER/NROL-107 任务 SIILENTBARKER 是 NRO 使用联合发射联盟 Atlas V 火箭进行的最后一次发射 弗吉尼亚州尚蒂伊 — 美国国家侦察局与美国太空军 (USSF) 太空系统司令部、太空发射 Delta 45 和联合发射联盟合作,于今天美国东部时间上午 8:47 从卡纳维拉尔角太空军站的 41 号太空发射台成功发射了 SILENTBARKER/NROL-107 任务。SILENTBARKER 是 NRO 和 USSF 联合进行的太空领域意识 (SDA) 任务,旨在满足国防部和情报界的太空保护需求。NRO 主任 Chris Scolese 博士表示:“SILENTBARKER 是 NRO 与美国太空军之间牢固关系的又一例证,也是我们为推进美国太空利益而共同努力的又一例证。我们送入轨道的能力将有助于扩大美国的情报优势并确保我们国家的安全。” NRO 和 USSF 有着共同的利益,即加强国家的 SDA 和指示与警告能力,以便及时做出决策,保护国防部和情报部门的关键能力免受当前和预计的威胁。NRO 和 USSF 一直在 SDA 方面展开合作,以实现对太空能力的有效防御。通过合作,NRO 牵头的收购和 USSF 的支持将提高任务能力并利用成本效率的机会。此外,SILENTBARKER 通过在关键设计评审三年后发射这项任务,展示了 NRO 用来及时向用户提供能力的收购方法所固有的灵活性。“今天的发射是团队努力的结果,也是 NRO 各个角落多年创新和勤奋的结晶,”太空发射办公室主任 Eric Zarybnisky 上校说。“该项目从概念到进入轨道的速度表明了我们致力于尽快将新技术投入使用。这有助于我们领先于竞争对手,并确保我们的用户拥有最佳的太空领域意识来完成他们的工作。”对于未来的任务,NRO 和 USSF 正在携手合作,共同塑造太空地面移动目标指示器 (GMTI) 的未来,GMTI 将为作战人员提供全天候、全天候的地面和海上目标探测和跟踪服务。通过与 USSF 和其他军事部门合作,NRO 灵活的采购方法将使我们能够快速开发和采购可靠且有弹性的 GMTI 系统,并在不久的将来为作战人员提供这一关键能力。
引言 本白皮书旨在描述为确保太空访问 (AATS) Nebula 项目实施零信任架构 (ZTA) 的零信任策略和实用方法。Nebula 立即实施国防部的零信任能力执行路线图,该路线图比高级能力的要求和时间表提前 8 年。本白皮书为 USSF 和 DAF 社区服务,展示强大的基础 ZTA 实施路径,反思经验教训,并鼓励社区之间进一步对话。位于加利福尼亚州范登堡和佛罗里达州卡纳维拉尔角的美国太空军 (USSF) 太空港对支持发射和试验场任务的基础设施成本的直接和间接费用收取费用有独特的政策。SpaceX、联合发射联盟 (ULA)、Relativity、Blue Origin 等商业发射提供商要求所有国防部、情报界和商业任务的直接云成本具有透明度、准确性和可重复性。这种独特的财务要求导致建立了一个专用的云账户结构,即 Nebula,它为发射率的指数增长(即每年 365 次以上的发射)提供了任务级粒度。由于需要一个专注于商业发射客户最终用户的新架构,因此有机会从头开始设计一个基于云的 ZTA 解决方案。Dark Wolf Solutions, LLC 从他们在国防部、情报部门和行业中的经验中汲取了教训。由于 Dark Wolf 作为可信渗透测试人员在 PlatformOne (P1) 平台上拥有丰富的经验,因此 Nebula 架构以 P1 架构和解决方案为参考,但不受其约束。零信任是一个旅程,所有计划都会在财政约束下随着时间的推移不断改进其实施。本白皮书说明了 Dark Wolf 在某些产品上做出的设计决策,如何将这些产品链接在一起以形成符合国防部 CNAP 参考设计 (RD) 的云原生接入点 (CNAP),以及如何将功能从 CNAP 扩展到 Nebula;保护资源免受未经授权的访问,同时确保在正确的时间、正确的地点和正确的人身上授予对这些数据和资源的访问权限。Nebula 技术团队和政府领导层做出了深思熟虑的决定,采用广泛采用的标准和商业用户来追求安全(即 P-ATOd 1 )托管服务,因为利用 Nebula 提供服务的租户包括大量商业客户。Nebula 团队的策略是专注于标准并创建模块化
在航空航天业中展翅高飞 也许您曾经用乐高积木连续数小时搭建宇宙飞船和飞机,或是痴迷于《星球大战》的一切。也许您曾为一个科学项目搭建了模型火箭,从此便迷上了它。也许您观看了航天飞机的发射,参观了卡纳维拉尔角,或者在第一次乘坐飞机时看到了驾驶舱内部,从而对航空航天产生了浓厚的兴趣。还是您以前从未考虑过航空航天,而正在寻找一个充满活力的行业来开启您的职业生涯或继续深造?无论您对航空航天的兴趣是长期的还是刚刚开始,航空航天业都非常适合您,因为它提供了充足的机会。航空航天业正面临着需要 STEM 技能(科学、技术、工程和数学)的工作岗位工人短缺的问题。在美国,只有 1.5% 的 25 至 34 岁人口拥有理科学位。这些技术工人是航空航天工业基础的骨干,对于持续创新、经济增长、全球竞争力甚至国家安全都至关重要。换句话说,如果你拥有合适的技能,你就可以成为航空航天业不可或缺的一部分,但 39% 的航空航天公司预测,技术工人的缺乏和存在的技能差距将对业务增长产生“极端”影响。每个空缺职位都可能意味着 14,000 美元的损失。与此同时,大量技术工人正在退休,很少有人愿意接替他们的职位。如果你具备技能或愿意努力获得这些技能,那么航空航天业的工作已经为你准备好了。航空航天业的三大支柱是商用和通用航空、军用飞机和空间系统。设计、制造和维修商用飞机、公务机、直升机、私人飞机、无人机以及子系统和部件的公司构成了商用和通用航空。超过 23,000 家供应商公司(大部分为中小型企业)构成了该行业的供应链。该行业的军事部分包括作战和非作战飞机及系统的制造。航天部件是该行业的第三大支柱,包括商业和政府用途的航天运载火箭、卫星、航天器和地面系统。它是国家安全的关键因素,也是现代经济的驱动力。由于该行业的职业发展空间巨大,那些希望进入航空航天业的人可以从事各种职业,从成为飞行员到空中交通管制员,再到制造飞机,甚至制造飞机的零部件。例如,Acutec Precision Aerospace 将这一概念归结为他们反复使用的一句话:“我们制造其他产品所需的材料。”
Chattahoochee和Savannah Rivers(Lydeard and Wooten 1991)可能是本地人(Page and Burr 2011)。”来自Natureserve(2024)的美国地位:“该物种原产于美国大多数美国,北部,印第安纳州和伊利诺伊州,西部到达得克萨斯州,南到[…]墨西哥,向东到移动河流系统。Chattahoochee和Savannah Rivers(Lydeard and Wooten 1991)排水的种群可能是本地的(Page and Burr 2011)。” Nico等
太空运输系统,航天飞机运载机 HAER 编号 TX-116-L 第 5 页 此外,在记录时,有两个主要特征将两个 SCA 区分开来。第一个是飞机两侧靠近轨道器前支撑支柱的上层甲板窗户的数量;NASA 911 每侧有五个窗户,而 NASA 905 只有两个。第二个区别是 2012 年应用于 NASA 905 的乙烯基贴花。在 NASA 905 的每一侧、前门后部和主甲板窗户上方,有一系列图像,描绘了飞机搭载每个轨道器(企业号、哥伦比亚号、挑战者号、发现号、亚特兰蒂斯号和奋进号)和幻影鳐的次数;这些是 2012 年 3 月应用的。第二组贴花位于 NASA 905 两侧驾驶舱窗户的正下方;上面刻有参加轨道器最后一次渡轮飞行的 SCA 飞行员和飞行工程师的名字。14 历史:最初,航天飞机轨道器设计有吸气式发动机,用于将飞行器送入轨道和从太空返回;此外,发动机还可用于将轨道器从一个位置运送到另一个位置。然而,研究表明,这些发动机在设计上导致了重量问题。因此,工程师们开始研究将轨道器从潜在的远程着陆点运送到肯尼迪航天中心的替代方式。15 1973 年,NASA 正在考虑使用洛克希德制造的 C-5A 货机 16 和波音 747“巨型喷气式飞机”作为运送轨道器的潜在交通工具。1973 年 8 月,NASA 的 DFRC 授予波音公司一份价值 56,000 美元的合同,以研究使用 747 运送轨道器的可行性。该合同是波音公司提交的一份未经请求的提案的结果。这项为期 60 天的研究旨在确定此类运载机的作战要求、性能、成本、时间表和初步系统设计。17 1973 年 10 月,洛克希德公司获得了一份合同,内容包括模拟 C-5A 作为渡运机使用的风洞试验。轨道器比例模型的试验 14 Alan Brown,“NASA 905 上的新徽标描绘了渡运飞行历史”,2012 年 4 月 5 日,http://www.nasa.gov/centers/dryden/Features/sca_905_logos.html。此时,NASA 911 已退役。 Brewer,访谈,第 15 页。15 William G. Register,《747 空运航天飞机轨道器》,载于第十二届太空大会论文集,佛罗里达州可可海滩,1975 年 4 月 9-11 日(卡纳维拉尔技术协会理事会,1975 年),第 1-1 至 1-3 页。1972 年 4 月 14 日,肯尼迪航天中心被选为航天飞机的主要发射场。Jenkins,《航天飞机》,第 155 页。早在 1969 年 10 月,人们就认为肯尼迪航天中心也将成为航天飞机的主要着陆场。“12 寻求航天飞机控制系统研究”,Marshall Star,1969 年 10 月 22 日,第 4 页。16 C-5A 的原始版本由洛克希德公司于 1968 年至 1973 年间制造。这种大型军用运输机具有强大的空运能力,主要由美国空军使用。17 “波音获得穿梭渡轮合同”,X-Press,1973 年 8 月 3 日,第 2 页。
在基于物理的飞行动力学模拟中,描述和评估了双飞机平台 (DAP) 概念的基准配置,该模拟用于为期两个月的任务,作为佛罗里达中部低层平流层的通信中继,距离奥兰多市中心 150 英里。DAP 配置具有两个大型滑翔机式(翼展 130 英尺)无人机,它们通过一条可调节的长电缆连接(总可伸缩长度 3000 英尺),可利用可用的风切变有效地航行而无需推进。使用机载 LiDAR 风廓线仪预测风分布被发现是必要的,以使平台能够通过找到平台上足够的风切变来有效调整飞行条件以保持航行。与传统的太阳能飞机一样,该飞机从太阳能电池中获取电力,但当风切变过多时,它还会使用螺旋桨作为涡轮机来获取风能。 60,000 英尺附近长达一个月的大气剖面(间隔 3-5 分钟)来自卡纳维拉尔角 50 Mhz 多普勒雷达风廓线仪测量的存档数据,并用于 DAP 飞行模拟。对这些数据集的粗略评估表明,DAP 航行所需的风切变持续存在,这表明即使受到适度上升/下降率的限制,DAP 也可能航行超过 90% 的长达一个月的持续时间。DAP 的新型制导软件使用非线性约束优化技术来定义航点