从大数据到热点 - 高熵碳化物、碳氮化物和硼化物的极端特性 Stefano Curtarolo 博士,Edmund T. Pratt Jr. 机械工程和材料科学学院杰出教授 Thomas Lord 机械工程和材料科学系 杜克大学,北卡罗来纳州达勒姆
图 2:(a) 316L+20%WC 复合材料的 SEM 显微照片。部分溶解的 WC 碳化物(亮圆圈)均匀分散在增强基质中。(b) (a) 的特写视图,显示了部分溶解的 WC 碳化物(浅灰色)的紧邻区域以及由凝固碳化物组成的网络。(c) (a) 的另一个特写视图,重点关注熔池和 HAZ 之间的过渡及其各自的凝固碳化物。
65 • 10 -4,其中考虑了背景的斜率,这是根据 PII 峰的形状估计的。该值比 Wagenblast 和 Swarts 的值大约大 50 倍。这个高峰值表明亚稳态氮化物或薄 AlN 沉淀物的分辨率远高于 Wagenblast 和 Swarts 显示的 Fe-0.2C 中亚稳态碳化物的分辨率。但是,它并没有表明氮空位情况下的单位缺陷松弛强度比碳空位情况下的单位缺陷松弛强度高 50 倍。
低密度Fe-Mn – Al-C钢是用于汽车,化学和飞机工业中应用的新兴结构材料类别之一。这些钢在房间和低温温度下表现出出色的拉伸机械性能,同时由于高含量高(每1 wt。%添加1.3%的密度降低1.3%),可提供高达18%1。1))此外,这些钢质表现出吸引人的特性,例如在室内和低温下,高强度和韧性,高度疲劳和良好的氧化耐药性。2–13)Fe – Al-Mn – C钢最初是在80年代和90年代开发的,是由于MN和Al对机械性能和氧化耐药性的有价值影响,因此廉价地替换了Fe – Cr – Cr-Ni-C不锈钢。在过去的十年中,低密度Fe-Mn – Al – C钢引起了极大的关注,因为这些钢等级可以用于低温工业的轻质耐撞车车身结构和结构组合。由于发生了几种无序和有序的FCC和BCC阶段,Fe – Mn – Al -C钢表现出可以通过选择性微观结构控制来调整的机械和物理性质的出色组合。特别是,有序的沉淀物的形成,例如L'1 2(Fe,Mn)3 Alc Carbides
传统的机油燃料汽车。燃料电池车辆依赖于将氢或甲醇转化为电的燃料电池。当前的领先技术是质子交换膜燃料电池(PEMFC),该技术用气态氢和质子导电膜运行。它提供了许多好处:良好的效率,可靠性和耐用性。但是,整体成本仍然很高,并且在传播技术方面的性能和耐用性方面的改善仍然是必要的。到目前为止已经研究了两种主要策略:一种涉及较便宜的催化剂的设计和开发,例如Pt/motybdenum Carbides; [2]另一个有吸引力的解决方案是在高温下操作PEMFC,这将简化热量管理,提高效率,提高质量运输,并极大地限制了一氧化碳对含量的催化剂。[3]美国能源部为PEMFC操作设定了120°C的操作温度。然而,由全氟磺酸(PFSA)聚合物组成的最先进的质子交换膜(PEM)被认为是基准材料,具有较差的机械和导电性能,可大大降低其在t> 100°C时的功效,从而限制了工作温度。在过去的二十年中,科学界制定了许多策略,以增强High
1-印第安纳波利斯普渡大学印第安纳大学普渡大学工程与技术学院机械与能源工程和综合纳米系统发展研究所,印第安纳波利斯普渡大学,印第安纳波利斯,美国46202,美国2-纳米相物材料科学中心 - 橡树岭国家实验室,Oak Ridge,Oak Ridge,TN 37831,美国37831,Lemt septor,lem tn 37831,lem tn 37831 60439,美国4 -lukasiewicz研究网络 - 波兰波兰华沙的微电子和光子学研究所 - 计算科学与工程部,橡树岭国家实验室,橡树岭,田纳西州橡树岭,37831,美国6-美国6-美国材料工程学院,西拉法伊大学,西拉法伊特大学,机构,美国479907.99090799999090909090909.99090990909909090.990990990.990990990.990990990990990.990999999090.9909999099090.990型,拉斐特(Lafayette),美国47907 * - 通讯作者banasori@purdue.edu摘要过渡金属碳化物已在储能,转换和极端环境应用中采用。在其2D对应物中的进步(称为MXENES)可以在〜1 nm厚度尺度上设计独特的结构。碱阳离子在MXENES制造,存储和应用中至关重要,但是,这些阳离子与MXENES的精确相互作用尚不完全了解。在这项研究中,使用Ti 3 C 2 t X,Mo 2 TIC 2 T X和Mo 2 Ti 2 C 3 T X MXenes,我们介绍了如何通过碱阳离子占用过渡金属空位位点,以及它们对MXENE结构稳定的影响以控制Mxene的相变。在MXENES中,这代表了其2D基底平面的阳离子相互作用的基本面,用于MXENES稳定和应用。我们使用原位高温X射线衍射和扫描透射电子显微镜,原位技术(例如原子层分辨率二次离子质谱法)和密度功能理论模拟进行了检查。广义,这项研究证明了在原子量表上陶瓷理想相关关系的潜在新工具。引言过渡金属碳化物已用于氧化物缺乏潜力的独特应用中,例如其高熔点(例如,HFC的〜4,000°C),1,2导热率(例如WC的63 W·M -1·K -1),3和机械行为(弹性模量)(弹性模型最高为549 GPA)。4在当前的研究中,碳空缺5,快速加热,6或高贵的金属装饰7提供了修改过渡金属碳化物系统固有物质行为的工具。8-17尽管某些方法(例如闪光灯或长期烧结在低(〜750°C)的温度为理想性能提供了一定的相位控制,但有6,12仍有机会准确地控制过渡金属碳化物阶段,以实现理想相位关系的阶段。18在2011年引入MXENES,将过渡金属碳化物推向了2D领域,19已增加了一个多种多样,可调节的家族,包括少量原子(〜1 nm厚)(〜1 nm-thick)和溶液处理的过渡金属碳化物,并将其添加到材料科学上。20,21 mxenes的化学多样性通过其广泛的化学式M n +1 x n t x显而易见,其中m代表一个或多个3 d -5 d和3-6组的n +1层,x代表N层的碳和/或氮气和/或氮气的n层
硬质合金,又称硬质合金,在现代工业发展中发挥着巨大但经常被忽视的作用。从 20 世纪 20 年代首次应用于拉丝模具以来,硬质合金如今已无处不在,其应用领域从金属切割和木材、塑料和复合材料的加工到玻璃瓶、铝罐和无处不在的圆珠笔尖的生产。增材制造能否打入年销售额数百亿欧元的市场?工学博士Johannes Pötschke 回顾了硬质合金生产的基本原理,并考虑了针对这种复杂材料系列最可行的 AM 工艺 >>>
陶瓷: - 离子粘合(难治性) - 金属和非金属元素的化合物(氧化物,碳化物,碳化物,氮化物,硫化物) - 脆性,玻璃状,弹性 - 非导向(绝缘体) - Ex。氧化铝(Al 2 O 3),二氧化硅(SIO 2)复合材料: - 由两种(或更多)个单个材料组成,这些材料来自上面讨论的类别。- 复合材料旨在显示每种组件材料的最佳特征-ex.fiberglass的组合,是一个熟悉的例子,其中将玻璃纤维嵌入聚合物材料中。玻璃纤维从玻璃中获取强度和从聚合物>
最近发现了二维(2D)纳米材料的特殊化学和物理能力,尤其是电化学特性,这是由于它们的固有形式出色和外部形式。结果,它们正在成为能源节能设备(例如超级电容器)的非常需要的候选者。本研究总结了2D纳米材料的最新进展。对2D纳米材料的生产技术,例如石墨烯,过渡金属氧化物,二分法和碳化物,除了它们的电化学特性外。除其他材料外,用于构建2D石墨烯的方法,提高电极的性能,从而使整体电荷放电。专门讨论了如何设计2D和3D架构,这些结构是使用2D纳米材料混合和多层的2D和多层结构。以及使用2D nanom nanomed nanomearialsials的超级领域的积极方面。我们讨论了将几种2D纳米材料(尤其是石墨烯)转化为超级电容器使用的3D材料方面的最新进展。基于石墨烯的能量储存材料的研究始于对电动双层充电和放电机制的检查,这在这些材料中很普遍。但是,当利用掺杂或化学功能化的石墨烯时,还涵盖了假能映射过程。随后,检查了非碳2D纳米材料,包括用于离子插入和氧化还原机制优先级的假能映射过程。过渡金属碳化物,过渡金属二分法和金属氧化物就是这些的例子。然后讨论了从两维纳米材料中组合3D巨大材料的方法,对于创建各种设备至关重要。关键字:2D - 过渡金属二核苷,3Dgraphene,功能化,能源存储,超级电容器