Sunidhi C Shetty †、Naresh Yandrapalli †、Kerstin Pinkwart †、Dorothee Krafft ¶、Tanja Vidakovic-Koch ¶、Ivan
多个基因表达的时间调节是复杂生物现象的基础。然而,用于编程连续遗传扰动的可扩展和通用基因回路架构很少。在这里,我们描述了一种基于模块化重组酶的基因回路架构,包括串联基因扰动盒 (GPC),通过交替使用两个正交配体进行处理,可以按定义的时间顺序连续表达多个基因。我们使用串联 GPC 顺序表达单向导 RNA,以编码触发突变顺序积累的转录级联。我们构建了一个一体化基因回路,可以顺序编辑基因组位点,在基因表达级联中的特定阶段同步细胞,并出于安全考虑删除自身。串联 GPC 提供了一种多层细胞编程工具,用于模拟多阶段遗传变化,例如肿瘤发生和细胞分化。
在讨论近期前景时,总裁兼首席执行官Hugues Simon先生评论说:“在我在Cascades的头八周内,我受到公司范围内的启发,为我们的客户和股东创造有意义的价值。我们预计,随着价格上涨的实施,在集装箱板的结果改善的驱动下,合并的第三季度结果会更加依次,并且在第二季度计划维护后,生产效率水平正常,并且在Bear Island和GreenPac的计划外延长停机时间。合并结果也有望从专业包装业务的稳定结果中受益。同时,由于较不利的销售组合,纸浆价格和较高的价格较高,预计将转化为纸条纸细分市场的较低结果。更广泛地说,正在进行的熊岛设施的提高仍然是重中之重,集装箱中宣布的价格上涨的推出也是如此,并继续关注整个业务的盈利能力,效率和生产力计划。”
连接组是突触连接的网络图。任何连接组的关键功能作用是约束神经元信号传导并雕刻整个神经系统的活动流。连接组在有关器官环境的快速传播中起着核心作用,从感觉神经元到高阶神经元,以进行动作计划,并最终再到效应子。在这里,我们使用一种简约的活动模型扩散模型来研究连接组在塑造假定的感觉级联反应中的作用。我们的模型允许我们模拟从传感器到其他大脑其余的信号通路,绘制不同感觉方式之间这些途径的相似性,并识别通过不同感觉方式同时激活的收敛区域 - 神经元。此外,我们考虑了两个多感官集成方案 - 一种合作的情况,在这种情况下,不同的感觉方式相互作用以“加快”(减少)神经元的激活时间和一个竞争性的“获胜者夺走所有情况”,其中不同的感觉流与同一神经领域相比。最后,我们使用数据驱动的算法根据级联模拟期间的行为将神经元分为不同的类别。我们的工作有助于强调“简单”模型在丰富连接数据中的作用,同时根据其联合连接/动力学属性提供数据驱动的神经元分类。
从湍流场的替代分解开始,这是一种多维统计形式主义,用于描述和理解自由剪切流中湍流,并应用于平面暂时射流的对称性。理论框架是基于两点速度增量的二阶时刻的精确方程,使我们能够在第一次以湍流混合和夹带的基础上追踪空间演变的级联反应过程。引人入胜的反向能量级联机制是造成界面区域中长结构的产生的原因。类似于二维的湍流,这些空间上升的反向级联反向提供的能量最终通过大尺度的粘度通过摩擦剪切过程在涉及这些大型结构的薄横流层的大尺度上消散。最后,从能量的角度来看,射流的外部非扰动区域也具有活性。发现,压力介导的几乎静态流体的位移的非本地现象会产生非扰动的泛滥,而及时通过过渡机制将有助于湍流射流的生长。总体而言,总体/尺度空间中比例能量弹药所采取的意外途径,对于已知的湍流混合和夹带描述的描述,这是一种新颖的新颖性,可能会对我们的理论理解和建模产生重大的影响,正如在此所预期的那样,通过简单地依赖于尺度依赖尺度依赖于丰富动力学的动力学的简单方程式所预期。
本文档是公认的手稿版本的已发表作品,该作品以Nano Letters的最终形式出现,版权所有©2022 American Chemical Society,在出版商的同行评审和技术编辑之后。要访问最终编辑和发布的工作,请参见https://doi.org/10.1021/acs.nanolett.2C03427。
∗ 我感谢 Enghin Atalay、Julieta Caunedo、Jeremy Greenwood、Veronica Guerrieri、Christopher Huckfeldt、Philipp Kircher、Ben Lester、Kristoffer Nimark、Ezra Oberfield、Nicolas Petrosky-Nadeau、Carlos Ram´ırez、Stephen Redding、Gill Segal、Ali Shourideh、Gianluca Violante、三位匿名审稿人以及各种研讨会和会议的参与者提供的有益评论和建议。我非常感谢康奈尔社会科学中心的支持。† 电子邮件:mt763@cornell.edu;地址:480 Uris Hall, Cornell University, Ithaca NY 14853
几项研究探讨了磁共振成像与LGG的恶性进展之间的关系,发现在纵向灌注加权磁共振成像下测得的相对脑血容量的变化可以预测LGG的恶性转化(11,12)。完全手术切除是当前可行的LGG的主要治疗方法(9)。尽管如此,侵入性生长和涉及LGG区域的特征使得在某些LGG患者中很难完全切除手术(13,14)。由于LGG的异质性和脑血屏障的存在,诸如化学疗法和免疫疗法之类的疗法并不令人满意(15,16)。因此,寻找新的生物标志物并制定治疗LGG的新治疗策略至关重要(17,18)。
摘要:甲基化是一种广泛存在的天然修饰,具有多种调节和结构功能,由大量 S -腺苷-L -蛋氨酸 (AdoMet) 依赖性甲基转移酶 (MTases) 进行。AdoMet 辅因子由多聚体蛋氨酸腺苷转移酶 (MAT) 家族从 L -蛋氨酸 (Met) 和 ATP 产生。为了推进机制和功能研究,已经开发出重新利用 MAT 和 MTase 反应以接受来自相应前体的可转移基团的扩展版本的策略。在这里,我们使用结构引导的小鼠 MAT2A 工程,以便从合成的蛋氨酸类似物 S -(6-叠氮己-2-炔基)-L -同型半胱氨酸 (N 3 -Met) 生物催化生产扩展的 AdoMet 类似物 Ado-6-叠氮化物。三种工程化的 MAT2A 变体表现出对延伸类似物的催化能力,并且在没有和存在竞争性 Met 的情况下,都支持与 M. Taq I 和小鼠 DNMT1 的工程化变体在级联反应中进行 DNA 衍生化。然后,我们使用 CRISPR-Cas 基因组编辑将两种工程化变体作为 MAT2A-DNMT1 级联安装在小鼠胚胎干细胞中。所得细胞系在暴露于 N 3 -Met 且存在生理水平的 Met 时,保持正常的活力和 DNA 甲基化水平,并显示出 Dnmt1 依赖的 DNA 修饰和延伸叠氮化物标签。这首次展示了一种用于生物合成生产延伸 AdoMet 类似物的遗传稳定系统,该系统能够在活哺乳动物细胞中对 DNMT 特异性甲基化组进行轻度代谢标记。■ 简介
摘要:创伤性脊髓损伤(SCI)是一种威胁生命和改变生命的状况,导致感觉运动和自主性障碍使人衰弱。尽管创伤性SCI的临床管理取得了重大进展,但由于缺乏有效的疗法,许多患者继续遭受痛苦。对脊髓的初始机械损伤导致一系列二次分子过程和免疫,血管,神经胶质和神经元细胞种群中的细胞内信号传导级联反应,从而进一步损害受伤的脊髓。这些细胞内的级联反应呈现出令人鼓舞的翻译与治疗干预措施,因为它们在真核进化中的无处不在和保护性高。迄今为止,许多治疗剂已显示这些途径在改善SCI后恢复方面的直接或间接介入。然而,创伤性SCI的复杂,多方面和异质性的性质需要更好地阐明潜在的次级细胞内信号传导级联,以最大程度地减少脱靶效应并最大程度地提高有效性。转录和分子神经科学的最新进展为受伤的脊髓中这些途径提供了更仔细的表征。这篇叙事评论文章旨在调查MAPK,PI3K-AKT-MTOR,Rho-Rock,NF-κB和Jak-STAT信号级联,此外还提供了有关创伤性SCI后这些次级细胞内途径的参与和治疗潜力的全面概述。