摘要:近场辐射传热(NFRHT)测量通常依赖于定制的微发行版,这些版本在其原始演示后可能很难再现。在这里,我们使用纯硅(SIN)膜纳米力学谐振器研究NFRHT,一种可广泛可用的基材,用于电子显微镜和光学力学等应用,并可以轻松地沉积其他材料。我们报告的测量值降低到较大的曲率半径(15.5 mm)玻璃散热器和SIN膜谐振器之间的最小距离。在如此深的次波长距离处,热传递在(0.25 mm)2的有效区域上由表面极化共振支配,这与使用自定义的微型制造设备的平面 - 平面实验相当。我们还讨论了使用纳米力学谐振器的测量如何创造机会,同时测量近场辐射传热和热辐射力(例如,对Casimir力的热校正)。关键字:近场辐射,纳米力学谐振器,热辐射,表面极化
在本文中,我们考虑了在三维时空中在热量子场理论框架中获得的石墨烯的极化张量的收敛性。在过去的几年中,与石墨烯系统中Casimir力的计算以及对石墨烯片的电导率和反射的研究有关,引起了很多关注。文献中存在矛盾的陈述,尤其是关于该张量是否在三个维度上具有紫外线差异。在这里,我们使用众所周知的维数正则化方法分析了这个问题。表明,对极化张量的热校正在任何d上都是有限的,而其零温度部分的表现在d = 3和4中差异。对于d = 3,它是通过分析延续获得的,而无限期减去。对于d = 4的时空,在减去极项后发现零温度下极化张量的有限结果。我们的结果与以前对零温度和非零温度的极化张量的计算一致。这为在石墨烯和其他二维新颖材料的研究中更广泛地应用理论方法开辟了可能性。
最近,Kostelecký 和 Samuel [1] 证明,在弦场论的背景下,当扰动弦真空不稳定时,由张量场控制的洛伦兹对称性 (LS) 破坏是自然的。Carroll 等人 [2] 在电动力学的背景下,研究了在修正的陈-西蒙斯拉格朗日空间中,即在 (3 + 1) 维中,存在背景矢量场的理论和观察结果,这种空间保持了规范对称性,但破坏了洛伦兹对称性。这些研究的目的之一是扩展可能涉及 LS 破坏的理论和模型,以寻找可以回答通常物理学无法回答的问题的基础物理理论。从这个意义上讲,标准模型 (SM) 已成为这些扩展的目标,这些扩展以 LS 破坏为特征,最终形成了我们今天所知道的扩展标准模型 (ESM) [3, 4]。近年来,LS 破坏已在物理学的各个分支领域得到广泛研究,例如磁矩产生 [5]、Rashba 自旋轨道相互作用 [6]、Maxwell-Chern-Simons 涡旋 [7]、涡旋状结构 [8]、卡西米尔效应 [9, 10]、宇宙学
4 月 25 日上午 9 点,在边境会议中心举行的退役仪式上,将有 13 名军官、3 名一级准尉和 1 名高级士官因其对国家的服务而受到表彰。仪式还将在 https://www.facebook. com/USAGLeavenworth/ 上进行现场直播。退役人员包括:联合兵种中心中校 Chase Crabtree;指挥和参谋学院中校 Eric Hong;国际安全部队援助联合中心中校 Rodney Rudolph;任务指挥训练计划中校 Theodore Ream;指挥和参谋学院中校 Michael Tiongco;MCTP 中校 Jose Ramon Vasquez;任务指挥卓越中心中校 Jason Ward;MCTP 中校 James F. Watts;任务指挥作战实验室的 Michael P. Barr Jr. 少校;MCTP 的 Matthew G. Easley 少校;MCTP 的 Jose D. Enriquez 少校;联合兵种中心训练的 Christopher Gehri 少校;MCTP 的 Kevin Wiley 少校;陆军大学的四级准尉 Damien Tyran Knight;特种部队营的四级准尉 Yvan F. Uyen;MCTP 的三级准尉 Casimir Droleski;以及 STB 的一级军士长 Camillya Belle。
E. M. Lifshitz,Lev Davidovich Landau(1908-68)7 A. A. Abrikosov,回忆。 D. Landau 29 A. I. Akhiezer, Teacher and friend 36 N. E. Alekseevskii, Dau in the thirties 57 E. L. Andronikashvili, The Leningrad period in the life of young Professor Landau 60 V. B. Berestetskii, Studies on elementary particles 63 H. Casimir, Landau 67 D. S. Danin, The passionate sobriety of youth 78 D. S.达丁,如果世界上所有的科学家。 。 。 84 I. E. Dzyaloshinskii,Landau,通过学生的眼睛89 I. L. Fabelinskii,与L. D. Landau 97 E. L. Feinberg,Landau等人的一些会议105 V. L. Ginzburg,Ginzburg 117 V. L. Ginzburg,Remition of Remition of I. Gol. I. Giers, 136 L. P. Gor'kov,“年轻人” 143 Z. I. Gorobets,乘汽车进入山区146 B. L. Ioffe,如果Landau现在还活着153 M. I. Kaganov,Landau,Landau,我认识他157 I. M. Khalatnikov,Khalatnikov,Landau学校是如何开始的166 I. M. Khalatnikov,a dapte in 166 I. M. Khalatnikov,a Proins A. Kikoin,我如何成为Kharkov University 180 A. S. Kompaneets的老师,L。D. Landau担任教师184 B. G. Lazarev,我的记忆187 O. I. I. Martynova,不是很亲密的191 R. E. Peierls。 Pokrovskii,《科学与生活:与DAU的对话》 205E. M. Lifshitz,Lev Davidovich Landau(1908-68)7 A.A. Abrikosov,回忆。 D. Landau 29 A. I. Akhiezer, Teacher and friend 36 N. E. Alekseevskii, Dau in the thirties 57 E. L. Andronikashvili, The Leningrad period in the life of young Professor Landau 60 V. B. Berestetskii, Studies on elementary particles 63 H. Casimir, Landau 67 D. S. Danin, The passionate sobriety of youth 78 D. S.达丁,如果世界上所有的科学家。 。 。 84 I. E. Dzyaloshinskii,Landau,通过学生的眼睛89 I. L. Fabelinskii,与L. D. Landau 97 E. L. Feinberg,Landau等人的一些会议105 V. L. Ginzburg,Ginzburg 117 V. L. Ginzburg,Remition of Remition of I. Gol. I. Giers, 136 L. P. Gor'kov,“年轻人” 143 Z. I. Gorobets,乘汽车进入山区146 B. L. Ioffe,如果Landau现在还活着153 M. I. Kaganov,Landau,Landau,我认识他157 I. M. Khalatnikov,Khalatnikov,Landau学校是如何开始的166 I. M. Khalatnikov,a dapte in 166 I. M. Khalatnikov,a Proins A. Kikoin,我如何成为Kharkov University 180 A. S. Kompaneets的老师,L。D. Landau担任教师184 B. G. Lazarev,我的记忆187 O. I. I. Martynova,不是很亲密的191 R. E. Peierls。 Pokrovskii,《科学与生活:与DAU的对话》 205A. Abrikosov,回忆。D. Landau 29 A. I. Akhiezer, Teacher and friend 36 N. E. Alekseevskii, Dau in the thirties 57 E. L. Andronikashvili, The Leningrad period in the life of young Professor Landau 60 V. B. Berestetskii, Studies on elementary particles 63 H. Casimir, Landau 67 D. S. Danin, The passionate sobriety of youth 78 D. S.达丁,如果世界上所有的科学家。。。84 I. E. Dzyaloshinskii,Landau,通过学生的眼睛89 I. L. Fabelinskii,与L. D. Landau 97 E. L. Feinberg,Landau等人的一些会议105 V. L. Ginzburg,Ginzburg 117 V. L. Ginzburg,Remition of Remition of I. Gol. I. Giers, 136 L. P. Gor'kov,“年轻人” 143 Z. I. Gorobets,乘汽车进入山区146 B. L. Ioffe,如果Landau现在还活着153 M. I. Kaganov,Landau,Landau,我认识他157 I. M. Khalatnikov,Khalatnikov,Landau学校是如何开始的166 I. M. Khalatnikov,a dapte in 166 I. M. Khalatnikov,a Proins A. Kikoin,我如何成为Kharkov University 180 A. S. Kompaneets的老师,L。D. Landau担任教师184 B. G. Lazarev,我的记忆187 O. I. I. Martynova,不是很亲密的191 R. E. Peierls。 Pokrovskii,《科学与生活:与DAU的对话》 205
尽管我们习惯于谈论原子钟,但这些设备的起源可以追溯到核物理学的研究。在1924年,沃尔夫冈·保利(Wolfgang Pauli)指出,原子光谱线的某些分裂起源于核的磁矩与电子1之间的耦合。在1935年,亨德里克·卡西米尔(Hendrik Casimir)表明,当细胞核的电荷分布不是球上对称2时,电动相互作用会产生可比幅度的线分裂,但具有不同的光谱模式。基于这种超细结构的精确测量,原子过渡的光谱已成为有关核性质的信息的重要来源。Isidor Rabi组研究了与微波辐射3相互作用的原子梁。可以以极好的重现性记录一些共振,以至于Rabi在1945年提议将它们用于“最准确的时计” 4。这是剖腹时钟的开创性想法,它一直是时间的基础数十年5。尽管在20世纪下半叶,原子和核PHY SIC的领域朝着不同的方向扩展,但现在,一个新兴的话题正在两个领域之间在两个领域之间建立新的联系,而高度精确的时钟的概念再次起着中心作用。在约9.2 GHz处CS时钟的共振频率取决于133 CS核,价电子及其电磁相互作用的性质。在设计良好的时钟中,原子受到保护,免受其他明智地改变共振频率的外部扰动。近年来,在
能量转移可以三种形式进行:传导,对流和辐射[1]。辐射是特殊的,因为我们不需要转移的材料介质。能量可以在真空中传输。从过去半个世纪的工作开始,已经确定,当物体处于接近范围内时,能量传输会增强[2-4]。许多实验[5-10]和理论计算[11-15]已经验证了这一点。这种接近领域的影响也发现了许多应用[16]。相关的运输现象是术的转移。这是范德华(Van der Waals)或伦敦有吸引力的力量[17]的起源[17],而卡西米尔(Casimir)[18-21]或Casimir-Polder力量[22,23]在考虑到有限的光速时。介电表面上方的原子是一个经典的问题,已被广泛构成[22,24,25]。对身体温度的微妙影响取得了进展[26-30]。到目前为止,即使对于全球非平衡情况,大多数理论发展都基于局部热平衡的含量[4,19],在该平衡中,每个对象仍然满足了流动性分解定理。系统可以通过逻辑上的平衡电导率现象的多普勒移位来建模[31 - 34]。最近仅研究了物体温度梯度的影响[35 - 37]。另一种非平衡转运的方法是用化学偏置修改玻璃功能[38]。这些研究将热辐射与扩散方程式或玻尔兹曼传输理论息息,但仍处于宏观或介绍水平。我们在这里的动机是在微观层面上工作,从物质模型开始,当时电子在某些(晶格)位点跳跃。因此,使用Keldysh非平衡绿色功能(NEGF)形式主义[39 - 42],可以从第一个原理中处理非平衡的AS-pect。
能量转移可以三种形式进行 - 传导,对流和辐射[1]。辐射是特殊的,因为我们不需要转移的材料介质。能量可以在真空中传输。从过去半个世纪的工作中,人们已经确定,当物体处于近场[2-4]时,能量传输会增强。通过许多实验[5-10]和理论计算[11-15]证实了这一点。这种近场效应也发现了许多应用[16]。相关的运输现象是术的转移。这是范德华(Van der Waals)或伦敦(london)在短距离内和卡西米尔(Casimir)[18-21]或Casimir-polder力[22,23]的起源[17],当考虑到有限的光速时,在较大的情况下。介电表面上方的原子是经典的概率,已经进行了广泛的研究[22,24,25]。对身体的脾气的微妙影响取得了进展[26-30]。到目前为止,即使在全球非平衡情况下,大多数理论发展都是基于局部热平衡的假设[4,19],在该假设中,每个对象仍然满足波动散失定理。由电流驱动的系统可以通过现象学上平衡电导率的多普勒移位进行建模[31-34]。对象的温度梯度的影响仅是最近投资的[35-37]。这些研究将热辐射与扩散方程式或玻尔兹曼传输理论息息,但仍处于宏观或介绍水平。另一种非平衡转运的方法是用化学势偏置修改玻璃功能[38]。我们在这里的动机是在微观层面上工作,从物质模型开始,作为电子在某些(晶格)位点跳动。因此,非平衡
[1] N. Li, T. Chang, H. Gao, X. Gao 和 L. Ge, 纳米技术, 2019, 30, 415601。[2] P. Hasse Palharim、B. Lara Diego dos Reis Fusari、B. Ramos、L. Otubo 和 AC Silva Phocheiram、J. Costa Teitoxeiram光生物学。织物。 ,2022,422,113550。[3] YM Shirke 和 SP Mukherjee,CrystEngComm,2017,19,2096-2105。 [4] D. Nagy、D. Nagy、IM Szilágyi 和 X. Fan,RSC Adv. ,2016,6,33743–33754。 [5] 王晓燕,张红,刘琳,李伟,曹鹏,Mater.莱特。 ,2014,130,248–251。 [6] 顾哲,翟天临,高斌,盛晓燕,王燕,傅华,马英,姚建军,J. Phys.织物。 B, 2006, 110, 23829–23836。 [7] T. Peng, D. Ke, J. Xiao, L. Wang, J. Hu 和 L. Zan, J. Solid State Chem. ,2012,194,250-256。 [8] FJ Sotomayor、KA Cychosz 和 M. Thommes,2018 年,18。[9] M. Gotić、M. Ivanda、S. Popović 和 S. Musić,Mater。滑雪。英语。 B,2000,77,193-201。 [10] H.-F.庞晓燕. 项哲杰.李Y.-Q.傅和 X.-T.祖,物理。 Status Solidi A,2012,209,537–544。 [11] B. Gerand 和 M. Fjglarz,J. Solid State Chem. ,1987,13。[12] C. Hai-Ning,智能窗应用的光学多层涂层的制备和表征,米尼奥大学,2005 年。[13] RF Garcia-Sanchez、T. Ahmido、D. Casimir、S. Baliga 和 P. Physra.,J.织物。 A,2013,117,13825–13831。
自从贝尔的不平等现象出现以来,很明显,局部隐藏的变量模型不能与量子力学的完整数学形式兼容[1,2,2,3,4]。的确,最近无漏洞的实验似乎与该结论一致[5,6,7,8]。尽管如此,仍然存在一个开放的问题,其中观察到的现象本质上是真正的量子,没有经典的类似物。这个阐明量子古典边界的问题是实际重要的,因为许多新的和新兴的技术,例如量子计算,量子通信和量子传感,都依赖于这种区别来实现其效果和安全性[9]。量子光学的领域似乎是探索这个问题的好地方,因为感兴趣的系统相对简单地以离散场模式来描述,而重要的光 - 物质相互作用可能仅限于光dection设备的物理学。量子光学的更好奇的方面之一是真空或零点字段(ZPF)的概念。在量子电动力学(QED)中,真空状态被定义为仅是给定领域模式的最低能量状态[10]。该状态下的光子数量为零,但其能量为非零,引起了“虚拟”光子的概念。尽管量子真空被视为仅是虚拟的,但其影响是非常真实的。现象,例如Casimir力量,范德华的吸引力,羔羊的移位和自发发射都有其起源在量子真空中[11]。量子光学中真空状态的突出性表明,它们可能在开发探索量子古典边界的物理理论中很有用。在这项工作中,我们将假设QED的量子真空是真实的,而不是虚拟的。这样做,我们将放弃对量子理论的所有正式参考,并考虑一个仅由古典物理学支配的世界,尽管在这种情况下,在这种世界中存在着重新的真空