充分利用量子设备并非易事。例如,提升量子计算机的性能可能需要接入一包新的量子门或投资额外的量子比特。考虑这些额外资源的一种方法是将它们视为“催化剂”,它们可以以类似于酶驱动生化过程的方式驱动量子过程。新加坡南洋理工学院的量子信息理论家 Nelly Ng 在量子热力学领域研究量子催化,但她表示该主题范围很广,适用于量子密码学和量子网络。“量子催化是一个不断发展的领域,因为仍有许多未解问题和不同的发展方向,”Ng 说。
● 生物物理化学基础研究 ● 分子动力学模拟 ● 机械化学 ● 软物质的平衡和非平衡统计力学 ● 生物聚合物/大分子的结构和动力学 ● 材料化学和非均相催化 ● 有机大分子——材料和生物医学中的设计、合成和应用 ● 离散超分子集合的自组装形成及其功能应用研究 ● 用于选择性吸附和封存污染物/危险物质的工程介孔聚合物 ● 用于生物医药的功能纳米结构的制造 ● 用于靶向治疗的新型分子实体的设计、合成和开发 ● 药物发现中的生物正交化学 ● 计算催化和小分子活化 ● 新型有机和过渡金属催化体系和人工金属酶的计算机设计 ● 用于研究生物分子金属相互作用的荧光光谱。
(有机综合/催化)大学:安特卫普大学(比利时法兰德斯大学)是一个自主和多元化的机构,支持民主和多元文化的社会,并且是一个平等的机会雇主。安特卫普大学是一家年轻的动态学术机构,用于国际公认,创新和开拓性研究。特别注意学生的培训和教学计划的创新。详细信息空缺:您将在化学系有机合成(ORSY)的MAES小组中致力于博士学位。Maes Group是Antwerp大学的卓越中心和Valorization Platform Ischem的合伙人。您的研究项目将处理开发新的催化方法,以将可生物可生产能平台分子转变为化学工业的基础。这项研究符合与Kuleuven合作的跨学科和Interniversity IBOF项目“为可持续催化的碳表面”的框架。职位描述:作为具有良好理论和实践知识的主文凭的持有者,您将开发基于碳表面(例如石墨烯及其衍生物)的新型催化剂,并研究这些催化剂在使用几类有机反应的生物可再生平台分子转化这些催化剂方面的应用。与伙伴Kuleuven的教授进行了广泛的互动,专门研究纳米级表面,建模和异质催化的表面。因此,需要偶尔在安特卫普和鲁汶(50公里距离)之间旅行。
系/中心/学院名称:化学系 学科代码:CYT-501 课程名称:催化与反应设计的计算方法 LTP:2-0-2 学分:3 学科领域:STAR 课程大纲:量子化学:Hartree-Fock 理论、基组、相关从头算方法、配置相互作用、MP2 理论、耦合簇方法、多参考方法、密度泛函理论、半经验方法、固体和周期模型。几何优化:势能表面的特征、几何优化方法、量子化学方法的几何优化、过渡态和反应路径。速率常数和平衡、统计热力学和平衡、过渡态理论、均相和异相催化、基于计算的示例以了解催化剂在反应中的作用、筛选催化反应以找到最佳催化剂。
2 School of Mechanical and Aerospace Engineering, Nanyang Technological University, 639798, Singapore 3 University of Chinese Academy of Sciences, Beijing 100049, China 4 Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea 5 SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, California 94305, USA 6 Cintra CNRS/NTU/Thales,Umi 3288,研究技术广场,637553,新加坡7催化理论中心,丹麦技术大学物理学系,丹麦林格比,丹麦2820 8材料学院,Sun Yat-Sen University,Sun Yat-Sen University,Sun Yat-Sen University,Sun Yat-Sen University,Puangzhou 510275,Cungzhou 510275 Nanyang Technological University Electronic Engineering,639798,新加坡†同等贡献通讯作者。*Byungchan Han:bchan@yonsei.ac.kr; ** pingqi gao:gaopq3@mail.sysu.edu.cn; *** hong li:ehongli@ntu.edu.sg电话:+0065 6790 5519
尽管使用传统方法 5 或手性催化剂 6,7 或双催化 8 来实现非对映体不对称催化(DAC)的新策略仍备受关注。相反,虽然含氢键供体的双功能催化剂已经得到广泛应用,9 但是仅通过改变这种催化剂的氢键供体来控制非对映体选择性的方法还很少见。10 对于双功能叔胺催化,理论研究提出了三种工作模型,它们在催化剂的氢键供体与亲核试剂和亲电试剂的相互作用方式上有所不同(方案 1A)。11 – 15 离子对氢键模型(A 型)最初由 Wynberg 11 a 提出,并得到 Cucinotta 和 Gervasio 的理论研究支持。11 b 布朗斯台德酸-氢键模型(B 型)由 Houk 等人揭示。通过量子力学计算。12 A 型模型与 B 型模型的不同之处在于,催化剂的氢键供体分别用于激活亲电试剂和稳定亲核中间体,同时形成的烷基铵离子作为布朗斯台德酸分别与其余亲核试剂或亲电试剂相互作用。当涉及(硫)脲等双氢键供体时,反应可能通过 A 型模型的过渡态进行,其中两个 N – H 键都与亲电试剂相互作用,正如 Takemoto 通过实验研究 13 a 所建议并得到理论研究的支持,13 b – d 或通过模型 B,其中两个
o 育儿假(2022) o 催化理论中心博士后 | 丹麦工业大学物理系 JK Nørskov 教授组(2018-2021) o SUNCAT 界面科学与催化中心博士后 | 斯坦福大学 JK Nørskov 教授组(2017-2018) o 理论化学博士(最优等)| 慕尼黑工业大学化学系 K. Reuter 教授组(2016) o 先进材料科学硕士(ECTS 等级:A“优秀”)| 由慕尼黑大学、慕尼黑工业大学和慕尼黑大学联合组织的巴伐利亚精英网络计划。奥格斯堡 (2010-2012) o 雅典希腊国家研究基金会研究助理 (2009-2010) o 应用数学与物理学文凭 (GPA:8.2/10) 雅典国立技术大学 (2003-2009)
• 印度理工学院德里-阿布扎比分校研究与外部参与副院长,2023 年至今 • 印度理工学院 (IIT) 德里分校化学工程教授,2023 年至今 • 印度理工学院德里分校 Yardi 人工智能学院 (ScAI) 副教授,2022 年至今 • 慕尼黑工业大学催化研究中心亚历山大·冯·洪堡研究员,2023-34 • 印度理工学院德里分校化学工程副教授,2018-2023 年 • 印度理工学院德里分校化学工程助理教授,2013-2018 年 • 特拉华大学能源创新催化中心访问学者,2016-17 年 • 弗吉尼亚大学博士后研究员,2011-2013 年 • 弗吉尼亚大学亚洲语言项目 Shea 语言之家协调员,2012-2013 年 • 语言助理(印地语/乌尔都语),Shea弗吉尼亚大学语言学院,2008-2009
来自废水和海水;从工业水中去除重金属➢在异质催化,电催化,光催化,水分拆分,生物感应,电池和超级电容器方面的经验以及有机分子的鉴定➢表面修饰和表征方面的专业知识➢设计有机和
摘要:在Weyl Semimetals的磁催化场景的背景下,提出了一种在极高磁场处进行手性对称性恢复的新机制。与以前的提案相反,我们在这里表明,在非常大的磁场上,轴突场的横向速度,手性冷凝物的相模式⟨⟨⟨ψ电话,有效地变为一维及其波动破坏了该费米式冷凝物的可能的非零值。我们还表明,尽管有U(1)手性对称性未在极大的磁场上破裂,但系统的光谱由定义明确的无间隙波式激发,连接到轴轴模式,以及相关的绝缘纤毛液体与U(1)手性渗透性相关的纤毛液体。当该理论补充了动态电磁场的包含时,手性对称性再次被打破,并且可以恢复磁性催化的常规情况。
