摘要:本研究提出了将介孔碳和介孔聚合物材料与延长的多孔介质结构一起作为阳离子染料分子的吸附剂的结果。两种类型的吸附剂都是合成材料。提出的研究的目的是对获得的介孔吸附剂的制备,表征和利用。使用低温氮吸附等温线,X射线衍射(XRD),小角度X射线散射(SAXS)和电位测量测量测量测量值,使用低温氮吸附等温线,X射线衍射(XRD)确定了所获得材料的物理特性,形态和多孔结构特征。使用扫描电子显微镜(SEM)成像形态和显微结构。使用X射线光电学光谱(XPS)进行了有关表面活性基团,元素组成和元素的电子状态的信息的表面化学特性,该化学特征提供了有关表面活性基团,元素组成和元素的电子状态。使用三种选定的阳离子染料(甲苯蓝色)和三甲烷(玛雀绿色和晶体紫)的平衡和动力学吸附实验确定介孔材料的吸附特性。分析了使用材料的纳米结构和表面特性的吸附能力。将广义的langmuir方程应用于吸附等温度数据的分析。染料吸附的动力学与吸附剂的结构特性密切相关。吸附研究表明,与聚合物材料相比,碳材料具有更高的吸附能力,例如0.88–1.01 mmol/g和0.33–0.44 mmol/g,与聚合物材料相比,碳材料的吸附能力较高(0.038-0.0.044 mmol/g和0.044 mmol/g和0.038-038-038-038-038-038-038-038-038-038-038-038-038-038-038-038-038-038-038-038-038-038-038-038-038-038- –0-038- – 0。使用各种方程式分析动力学数据:一阶(敌人),二阶(SOE),混合1,2-阶(MOE),多指数(M-Exp)和分形类MOE(F-MOE)(F-MOE)。
将阳离子辅助脂质添加到脂质纳米颗粒(LNP)中可以增加肺部递送并减少肝脏递送。然而,尚不清楚电荷是普遍的,还是取决于收取的组件。在这里,我们报告了阳离子胆固醇 - 依赖性的乳化性向乳头辅助脂质 - 依赖依赖性的偏向主义的证据。通过测试196 LNP如何将mRNA传递到22种细胞类型的方式,我们发现带电的胆固醇导致了与带电的助手脂质相比,肝脏递送比率不同。我们还发现,将阳离子胆固醇与阳离子辅助脂质结合在一起,导致心脏中的mRNA递送以及包括干细胞(包括干细胞)的几种肺细胞类型。这些数据突出显示了探索电荷的实用性 - 依赖性LNP TROPISM。
在有机p-缀合的寡聚物中,未配对电子的远距离离域化是实现分子晶体管中高电荷载体迁移率的重要要求。我们已经研究了一系列B,Meso,B-边缘粘合剂的卟啉低聚物的自由基阳离子,由CW-EPR,1 h和14 N Endor,Hyscore和Vis-Nir-Mir Simals支持,由CW-EPR,1 h和14 n N Endor,Hyscore和Vis-Nir-Mir样品组合,由CW-EPR,1 h和14 n N NOM组成。结果表明,在十多个卟啉单元中,自由基阳离子的连贯离域化,这对应于有效的连贯长度> 8.5 nm。我们发现自由基自旋密度的分布非常不均匀,并且随着定位长度的增加(在50 K时高达Tm≈4µs),相位记忆时间增加。这项研究为设计分子电子和旋转材料的设计开辟了新的途径。
摘要:金属有机框架(MOF)代表了最有前途的多孔固体之一,用于控制和减少温室气体排放。研究表明,开放金属位点(OMS)与二氧化碳强烈相互作用,因此是CO 2捕获的有效结合位点。但是,许多具有OMS的MOF缺乏框架稳定性,并且通常具有较高的再生温度。为了寻求解决稳定性问题的方法,我们通过通过ZR-TCPB-COOH上的质子交换金属离子,通过ZR-TCPB-COOH在ZR-TCPB-COOM(M = M = M = Alkali/Alkaline Earth Metal)中设计了一系列。原始的MOF(ZR-TCPB-COOH)具有非常强大的框架。PSM过程不会恶化框架稳定性,而是创建与二氧化碳形成牢固键的金属结合位点。结果表明,在低CO 2压力下,使用ZR-TCPB-COOM大大增强了吸收量,并且趋势趋于增加原子数(li + 在室温下N 2上的CO 2也可以实现高吸附选择性(CO 2 /N 2 IAST选择性(15:85)= 539.5)。 这种方法提供了一种可行的方法来提高CO 2捕获能力,尤其是在低浓度下。在室温下N 2上的CO 2也可以实现高吸附选择性(CO 2 /N 2 IAST选择性(15:85)= 539.5)。这种方法提供了一种可行的方法来提高CO 2捕获能力,尤其是在低浓度下。
今天,电池技术对所谓的LI电池进行了前所未有的多样化,其中包括其他单价(Na +或K +)和多价离子(例如Mg 2 +或Ca 2 +)。除其他因素外,通过建立更可持续和便宜的原材料平台的目标,使用更丰富的原材料,同时保持高能密度。对于这些新技术,决定性的作用落在电解质上,最终需要形成稳定的电极 - 电解质界面并提供齐全的离子电导率,同时保证高安全性。对聚合物基质中的金属离子的传输作为电池应用的实心电解质进行了广泛的研究,尤其是用于锂离子电池,现在也被认为用于多价系统。这构成了巨大的挑战,因为固体中的离子运输变得越来越困难。有趣的是,这个话题是80年代和90年代多年的关注主题,当时许多问题仍在引起问题。由于该领域的最新进展,在固体聚合物电解质中产生了多价离子转运的新可能性。出于这个原因,从这个角度来看,沿着记忆巷漫步,讨论当前的进步并敢于窥视未来。
Niobate锂是其具有挑战性的功能性能的特殊材料,可以适合各种应用。然而,到目前为止,在蓝宝石底物上生长的高品质200毫米li x nb 1-x o 3薄片迄今为止从未报道过这限制了这些潜在应用。本文报告了蓝宝石(001)底物在组合构造中通过化学梁蒸气沉积在蓝宝石(001)底物上对高质量的薄膜沉积的有效优化。使用此技术,LI/NB的流量比可以从单个晶圆上调整≈0.25至≈2.45。在膜的胶片(不同阳离子比)的不同区域进行了各种互补特征(通过不同的效果,显微镜和光谱技术),以研究阳离子化写计数器对纤维属性的影响。接近阳离子化学计量学(Linbo 3),外延纤维具有高质量(尽管有两个平面域,但低镶嵌性为0.04°,低表面粗糙度,折射率和带隙接近散装值)。偏离化学计量条件,检测到次级相(富含NB的流动比的Linb 3 O 8,Li 3 NBO 4具有部分非晶化的Li-foW流比)。linbo 3薄膜对于数据通信中的各种关键应用程序都具有很高的兴趣。
硫代磷酸盐基固态电池(SSB),具有高尼克三元阴极材料(例如Lini 0.83 CO 0.83 CO 0.11 MN 0.06 O 2(NCM))代表了有希望的下一代储能技术,原因是他们的预期高特定排放能力和改善的安全性。然而,通过相间通过相间的接触损失和细胞循环过程中的裂纹形成引起的快速衰减是一个显着的问题,阻碍了稳定的SSB循环和高能密度应用。在这项工作中,通过喷雾干燥过程获得了聚(4-乙烯基苯基苯基)三甲基铵双Bis(Tri-furomethanesulfonylimide)(NCM上的三甲基甲硫化液)(pvbta-tfsi))。NCM上仅2-4 nm厚度的极薄阳离子聚合物涂层有助于稳定NCM和LI 6 PS 5 Cl固体电解质(SE)之间的界面。电化学测试证实了长期循环性能和主动质量利用的显着改善。另外,聚合物涂层有效地抑制了NCM/SE界面的降解,尤其是氧化物种的形成,并降低了颗粒裂纹的程度。总体而言,这些结果突出了一种新的方法,可以使用SSB的NCM上的阳离子聚合物涂层来减轻SSB降解。
摘要:磁性半导体可能很快会提高微电子的能源效率,但具有这些双重特性的材料仍未得到充分探索。在此,我们报告了一种新的磁性和半导体材料 MnSnN 2 的计算预测和实现,通过薄膜组合溅射。掠入射广角 X 射线散射和实验室 X 射线衍射研究表明,MnSnN 2 表现出具有阳离子无序性的纤锌矿状晶体结构。这种新材料具有较宽的成分公差,单相区域范围为 20% < Mn/(Mn + Sn) < 65%。光谱椭圆偏振法确定光吸收起始点为 1 eV,与计算预测的 1.2 eV 带隙一致。电阻率测量与温度的关系支持了 MnSnN 2 的半导体性质。霍尔效应测量表明载流子密度与温度呈弱负相关,这表明电荷传输机制比原始半导体更复杂。磁化率测量表明 MnSnN 2 具有低温磁有序转变(≈ 10 K)和强反铁磁相关性。这一发现与块体阳离子有序 MnSiN 2 和 MnGeN 2 形成对比,在之前的研究中,它们在 400 K 以上表现出反铁磁有序。为了探究这种差异的起源,我们对阳离子有序和阳离子无序的 MnSnN 2 进行了蒙特卡罗模拟。他们发现阳离子无序降低了相对于有序相的磁转变温度。除了发现一种新化合物外,这项工作还表明,未来的努力可以利用阳离子(无)序来调整半导体材料中的磁转变,从而精确控制微电子特性。■ 简介
1 BioChemLab,那不勒斯费德里科二世大学医学与外科学院药学系,Via D. Montesano 49, 80131 Napoli,意大利;mariagrazia.ferraro@unina.it(MGF);carlo.irace@unina.it(CI)2 Biogem Scarl,遗传研究所,分子和精准肿瘤学实验室,83031 Ariano Irpino,意大利;marco.bocchetti@unicampania.it 3 精准医学系,坎帕尼亚“路易吉万维泰利”大学医学与外科学院,80138 Napoli,意大利;gabriella.misso@unicampania.it 4 化学科学系,那不勒斯费德里科二世大学化学科学系,Via Cintia 21, 80126 Napoli,意大利;claudia.riccardi@unina.it(CR); marco.trifuoggi@unina.it (MT); luigi.paduano@unina.it (LP) * 通讯地址:rita.santamaria@unina.it (RS); marialuisa.piccolo@unina.it (MP)
摘要:Li-Excess电极材料有可能提高锂离子电池的能量密度,但是在阳离子隔离的岩石材料中,阴离子氧化还原材料的不稳定性的起源仍在争论中。在这项研究中,Li 3 NBO 4- COO的二元系统作为锂储存应用的电极材料。在此二进制系统中,化学计量lico 2/3 nb 1/3 o 2与NB离子的部分顺序结晶成岩石型结构。在增加Li 3 NBO 4馏分后,阳离子排序就会丢失,形成了阳离子隔离的岩石盐结构。尽管Li-Excess Li 4/3 CO 2/9 NB 4/9 O 2可以指出,电极材料的可逆能力很大,可转动性和电荷较大的电荷/放电曲线的较大电压滞后。在原位XRD测量的结果中也证明了电化学周期的不可逆转结构变化,这表明对于LI 4/3 CO 2/9 CO 2/9 NB 4/9 O 2,阴离子氧化还原不稳定。X射线吸收光谱表明,对于这些氧化物,在SRCOO 3中观察到的配体孔的部分稳定。配体孔对LI 7/6 CO 4/9 NB 7/18 O 2更有效地稳定,具有较少的Li-Excess和富含共同组成。通过对Li 3 NBO 4- COO的二进制系统进行系统研究,进一步讨论了影响可逆性的因素和阴离子氧化还原的不可逆性。■简介