数字化和分布式的消费电子产品已成为模范世界的定义特征。能够与各种日常物品(例如,设备,护理设备,服装)提供电子功能的能力,导致越来越多的新产品可以感知,交互和互动和信息。但是,这些添加的电子功能带来了新的挑战,因为电子设备涉及到良好的限制,因此,这些挑战是限制的,即限制了限制,因此,适合于技术,技术,技术,技术,技术,技术,技术,技术,技术上,这些挑战;这些挑战造成了显着的环境压力(在2021年,全球估计的电子废物约为52吨)(1,2)。同时,随着社会从基于化石的燃料到可再生能源的过渡,诸如电池之类的电气组件(例如电池)需要大量生产,以满足未来的能源需求,从本质上讲,这需要间歇性存储。
由AygenSavaşAlkan提交,部分履行了中东技术大学化学工程学硕士学位的要求,由HalilKalıpçılar博士教授,Pretied and Applied Sciences研究生院,PınarCiseciences研究生院PınarCharissScience教授,PınarCasalık博士。Zeynep博士Zulfaz博士EMECEN主管,化学工程,METU检查委员会成员:LeventYılmazChemical Engineering教授,Metu Assoc。 Zeynep博士ÇulfazEmecen Chemical Engineering,Metu教授BirgülTantekinErsolmaz Chemical Engineering,伊特·艾协会。 METU助理Erhan Bat Chemical Engineering博士。 EmreBüküşoğlu博士,MetuZeynep博士Zulfaz博士EMECEN主管,化学工程,METU检查委员会成员:LeventYılmazChemical Engineering教授,Metu Assoc。Zeynep博士ÇulfazEmecen Chemical Engineering,Metu教授BirgülTantekinErsolmaz Chemical Engineering,伊特·艾协会。 METU助理Erhan Bat Chemical Engineering博士。 EmreBüküşoğlu博士,MetuZeynep博士ÇulfazEmecen Chemical Engineering,Metu教授BirgülTantekinErsolmaz Chemical Engineering,伊特·艾协会。METU助理Erhan Bat Chemical Engineering博士。 EmreBüküşoğlu博士,MetuMETU助理Erhan Bat Chemical Engineering博士。EmreBüküşoğlu博士,MetuEmreBüküşoğlu博士,Metu
* 通讯作者:firsel1012@gmail.com 摘要 注射器接种疫苗的使用提高了儿童的免疫覆盖率。尽管如此,肺炎仍然是五岁以下儿童死亡的主要原因,占该年龄段死亡人数的 70% 以上。为了应对针头恐惧症等挑战,透皮给药系统为局部和全身给药提供了一种有前途的微创替代方案。本研究重点开发和评估一种用于儿童肺炎疫苗透皮给药的椰果-透明质酸纤维素微针制剂。研究包括制备椰果、纤维素悬浮液、微针制造以及随后的特性描述和有效性测试。结果表明,微针达到溶胀平衡,溶胀度为 1。扩散测试表明,90 分钟内药物释放率为 1.173%,穿透角质层。扫描电子显微镜 (SEM) 分析证实,Pin 12 的平均微针长度为 763.6 μm,宽度为 191.7 μm,表明其适合透皮应用。这些发现凸显了椰果透明质酸微针是设计精良且有效的肺炎球菌疫苗输送平台,为改善儿科免疫接种和应对儿童医疗保健中的关键挑战提供了一种新颖的解决方案。关键词:药物输送系统、微针、椰果、PCV-13(肺炎球菌结合疫苗-13)
摘要:纺织业是第二大水密集型行业,并产生了大量的废水。即使在较低的浓度下,纺织品废水中存在的染料和重金属也会对环境和人类健康造成不利影响。最近,由于纳米词/添加剂在聚合物基质中的掺入膜性能增强,混合基质膜引起了极大的关注。这项当前的研究研究了ZIF-8/Ca膜对去除染料的疗效和实时纺织业流出物的处理。最初,使用探针超声仪合成ZIF-8纳米颗粒。XRD,FT-IR和SEM分析证实了晶体和六角形ZIF-8纳米颗粒的形成。将ZIF-8纳米颗粒分散到乙酸纤维素基质中,并使用“相浸入法”制备膜。使用FT-IR和SEM分析对膜进行了表征,该分析认可ZIF-8在聚合物基质中的不体化。后来,通过染料去除研究验证了ZIF-8/Ca膜的功效。对晶体紫,酸红色和反应性黑色的染料去除研究表明,膜的去除效率约为85%,并且研究进一步扩展到实时纺织流出的处理。关于纺织流出物的研究盛行,ZIF-8/CA膜也熟练地消除了化学氧需求(COD)〜70%,总有机碳(TOC)〜80%,以及诸如铅,铬和含水量的重金属,以及从纺织废水中获得的含量,并且证明是对纺织品的效果。
2.4.1。液滴尺寸。用激光差异方法(Mastersizer 3000,Malvern Inc)测量了液滴尺寸及其大小分布。2.4.2。界面张力。使用dunoüy板法(BZY-2张力计,亨普仪器)测量油/水接口处的界面张力。2.4.3。zeta电位。在室温下,用痕量激光多普勒电溶剂方法(Zetasizernano Zs,Malvern Inc.)测量丙烯酸酯迷你乳液的Zeta电位。用水将样品稀释一百次,每个样品的pH在5处控制以防止pH干扰。对于每个样品,重复测量三次。2.4.4。sem。在3 kV加速电压下,通过扫描电子微拷贝(SEM)(RIGMA/VP,Carl Zeiss显微镜LTD)研究了带有或没有CNC的聚丙烯酸酯样品的形态。将聚丙烯酸酯乳液稀释一千次,掉在硅片上,在空气中干燥,放在平台上进行观察。
摘要:纳米纤维素是一种基于生物的材料,在水纯化领域具有巨大的潜力。可能用作从溶液中去除金属离子的关键吸附剂材料。然而,尚不清楚吸附在纤维素表面上的金属离子的结构。这项工作的重点是使用异常的小角X射线散射(ASAXS)定量地确定带负电荷的箱子型纤维素纳米晶体(CNC)的不同货架的金属离子的三维分布。这些分布会影响这些材料中的水和离子通透性。数据表明,将CNC表面的羧酸盐密度从740 mmol/kg增加到1100 mmol/kg改变了吸附离子的结构的性质,从单层变成了单层结构。单层在CNC纳米颗粒周围建模为船尾层,而多层结构则建模为纳米颗粒周围柱状层顶部的弥漫层。在船尾层中,最大离子密度从1680升至4350 mmol的RB + /(CNC的kg),随着纳米颗粒表面上的羧酸盐密度的增加。此外,数据表明,CNC可以利用多种机制(例如静电吸引力和交际效应)来吸附不同价值的植物。通过了解吸附金属离子的空间组织,可以进一步优化基于纤维素的吸附剂的设计,以提高分离应用中的吸收能力和选择性。关键字:纤维素纳米晶,吸附,异常小角X射线散射,吸附剂,水净化,离子交换a
DOI:https://dx.doi.org/10.30919/es8d588 纤维素/碳纳米管复合柔性电极在超级电容器中的研究进展 孙哲1 齐厚娟1 陈曼慧1 郭斯通1 黄占华1,* Srihari Maganti2 Vignesh Murugadoss3 黄米娜2,3 郭占虎2,* 摘要 如今,对可穿戴、便携、可折叠的小型电子产品和人机交互界面设备的需求日益增加。因此,超级电容器由于其能量/功率密度高、充放电过程快、循环寿命长等优点,作为储能装置得到了广泛的研究。其中柔性电极材料是提升超级电容器性能的关键成分。纤维素作为一种天然柔性材料,具有成本低、来源广泛、可再生、机械性能强等特点,被用作电极的柔性基底或模板。为了提高纤维素基柔性电极的导电性和优异的电化学性能,将具有高导电性、良好的热稳定性和化学稳定性以及独特内部结构的碳纳米管(CNT)集成到纤维素基柔性电极中,制备出具有高能量/功率密度和长循环寿命性能的柔性超级电容器用纤维素/CNT基柔性电极。本文主要针对纤维素/CNT进行综述,着重总结了用于超级电容器的纤维素/CNT基复合柔性电极的组成、制备和机理,并讨论了纤维素/CNT基复合柔性电极目前面临的挑战和前景。
摘要:纤维素纳米材料是近年来最相关的科学技术发现之一。纤维素纳米晶体 (CNC) 在其中脱颖而出,因为它们具有非凡的化学、机械、热和光学特性,使其成为从地球上最丰富的生物聚合物制造先进材料的有趣替代品。本文对近年来发表的文献进行了批判性分析,强调了在寻找更环保的方法过程中出现的各种获取过程。其中包括从各种来源(非食用生物质和农业工业废物)提取 CNC 所使用的工艺的比较表,表明了该工艺的有效性以及这种可持续先进生物纳米材料的特性和应用。
摘要:功率变压器对于最常见的电网的可靠性至关重要,该电网最常见于牛皮纸隔热并浸入矿物油中,其中纸张的老化状态主要与变压器的运行寿命相关。聚合度(DP)是评估绝缘纸的老化状况的直接参数,但是现有的DP测量通过粘度方法具有破坏性和复杂性。在本文中,引入了Terahertz时域的表格(THZ-TDS),以达到对绝缘纸DP的快速,无损的检测。绝缘纸的吸收光谱表明,在1.8和2.23 THz处的特征峰区都表现出与DP的对数线性定量关系,并且通过对不同类型的绝缘纸进行上述关系来确认它们的普遍性。傅立叶变换红外光谱(FTIR)分析和分子动力学建模进一步表明,1.8和2.23 THz分别与水 - 纤维素氢键强度和无定形纤维素的生长有利相关。本文证明了将THZ-TDS应用于绝缘纸中DP的无损检测并分配了特征吸收峰的振动模式的生存能力。
在生物传感器技术中使用二维(2D)材料已革命 - 领域。像石墨烯,过渡金属二核苷(MOS 2和WS 2)这样的材料,六角硼(H-BN)和黑磷具有纳米级厚度和不同的物理特性,可能会大大增强生物传感器的性能[1]。石墨烯具有特殊的电导率和机械强度,以其在生物传感器中的多功能性而广泛认可。其平面结构和高电子迁移率提高了敏感性和特定的特定性,使其成为理想的组成部分[2]。过渡金属二分法源(例如MOS 2和WS 2)由于其分层结构而具有独特的半导管特性。这些材料可以与光线和电场相互作用,使其特别适合需要精确的电特性的生物传感器应用[3]。此外,研究增强了2D材料在癌症生物传感器中的作用:一种用于肺癌检测的MOS 2 /CU 2 O传感器[4],PEC生物传感器的食管癌[5]和用于广泛癌细胞检测的实验室芯片设计[6]。