近年来,量子机器学习在理论和实践方面取得了长足的发展,已成为量子计算机在现实世界中应用的有希望的领域。为了实现这一目标,我们结合了最先进的算法和量子硬件,为量子机器学习应用提供了实验演示,并可证明其性能和效率。具体来说,我们设计了一个量子最近质心分类器,使用将经典数据高效加载到量子态并执行距离估计的技术,并在 11 量子比特离子阱量子机上进行了实验演示,其准确度与经典最近质心分类器的准确度相当,可用于 MNIST 手写数字数据集,并可实现 8 维合成数据的准确度高达 100%。
Quantum机器学习近年来已经看到了相当大的理论和实际发展,并已成为为量子计算机应用现实世界应用的有希望的领域。为了实现这一目标,我们在这里结合了最先进的算法和量子硬件,以提供量子机学习应用程序的实验证明,并提供可证明其性能和效率的保证。In particular, we design a quantum Nearest Centroid classifier, using techniques for efficiently loading classical data into quantum states and performing distance estimations, and experimentally demonstrate it on a 11-qubit trapped-ion quantum machine, match- ing the accuracy of classical nearest centroid classifiers for the MNIST handwritten digits dataset and achieving up to 100% accuracy for 8-dimensional合成数据。
我们开始特定的质心,并执行2D区域的生长过程,直到它触及另一个质心为止。然后将第二个质心用于进一步的区域生长。我们重复了这个2D区域的生长过程,该过程将所有质心连接起来,在大脑周围具有轮廓,边框厚度约为5像素宽度。然后,我们在轮廓周围形成滑动线。在每个像素上,位于水平线中的像素的平均值并具有质心的值±3的值,最接近平均值作为边界点固定。在每个像素的轮廓周围都重复这一点。连接在每个水平线上选择的点,从而为大脑提供了线边界。该边界被用作标记,并且封闭面罩内部的区域给出了大脑部分。
区分两个光学点源是光学领域的一个重要课题,有望应用于天文观测和生物成像。然而,传统方法有一个称为瑞利诅咒 [1] 的缺陷,当两个点源彼此靠近时,很难区分它们。这个问题可以转化为估计两个点源的质心和分离的问题,瑞利诅咒表示当两个点源彼此靠近时难以估计分离。最近,Tsang 等人 [1] 在量子理论框架下研究了这个问题,并表明有可能以与它们相距较远时相同的精度估计两个靠近的点源之间的分离。此外,他们设计了一种称为空间模式解复用(SPADE)的测量方案,当预先知道两个点源的质心时,该方案可以达到这种精度。 SPADE 方案可以让我们准确估计分离,但它需要事先知道质心。因此,Grace 等人 [2] 提出了一个两步程序,其中首先要估计质心。与此同时,Parniak 等人 [3] 和 Bao 等人 [4] 研究了同时估计质心和分离,但他们没有考虑测量的最优性。
动物质心、椭圆和身份。最粗略地说,动物行为可以通过估计其质心(即中点或重心)随时间的位置来量化。这些质心轨迹被量化为图像坐标序列,反映了动物在其环境中的运动,可用于测量空间导航或运动行为。质心将动物视为一个点,无法捕捉其方向,但可以通过找到环绕动物的椭圆的长轴和短轴来增强这种描述(图 1b)。这是一种方便的通用描述,因为大多数具有中枢神经系统的动物都有相似的身体结构,其中脊髓或腹神经索在细长身体的中心形成一条线。估算质心和椭圆的经典方法主要依赖于背景减法,该算法识别属于动物(即前景)的图像像素,通过找到它们坐标的中点即可计算出质心。当背景与动物形成对比时(例如在背光场所),可以通过对图像强度进行简单的阈值处理来执行背景减法。如果背景是静态的,则可以通过查找中值图像帧来建模;但是,如果动物长时间不动,此方法通常会失败。经典方法采用稳健的算法来建模背景 1 ,但较新的方法已开始使用深度学习来更好地处理更复杂的背景,从而能够在更自然的条件下追踪动物 2 。将椭圆追踪扩展到多种动物使行为描述更加丰富,其中可以使用相对距离和方向等量来推断复杂的社会
缩写 AIS = 简明损伤量表;AMP = ICP 脉冲幅度;AU = 任意单位;AUC = 曲线下面积;CENTER-TBI = 欧洲创伤性脑损伤神经创伤效果合作研究;CT = 计算机断层扫描;FFT = 快速傅里叶变换;GCS = 格拉斯哥昏迷量表;GOSE = 格拉斯哥扩展预后量表;HFC = 高频质心;HHC = 高次谐波质心;ICP = 颅内压;ICU = 重症监护病房;IQR = 四分位距;ISS = 损伤严重程度评分;MANOVA = 多元方差分析;MLS = 中线移位;PRx = 压力反应指数;PSI = 脉搏形状指数;ResNet = 残差神经网络;ROC = 受试者工作特征;TBI = 创伤性脑损伤。提交于 2022 年 6 月 27 日。接受于 2022 年 10 月 28 日。引用时请注明 2022 年 12 月 23 日在线发布;DOI:10.3171/2022.10.JNS221523。
摘要 — 多通道校准对于检测移动目标并准确估计其位置和速度至关重要。本文介绍了一种快速有效的沿轨多通道系统校准算法,特别是针对时空自适应处理 (STAP) 技术。所提出的算法校正了接收通道的相位和幅度偏移,还考虑了沿斜距和方位角时间的多普勒质心变化(例如由大气湍流引起)。多普勒质心变化的知识对于准确的杂波协方差矩阵估计尤其重要,这是 STAP 有效抑制杂波所必需的。重要的校准参数和偏移量直接从距离压缩训练数据中估计。基于使用 DLR 机载系统 F-SAR 获取的真实多通道 X 波段雷达数据对所提出的算法进行了评估,并与最先进的数字通道平衡技术进行了比较。实验结果表明,所提出的校准算法在实时应用中具有潜力。
(b)使用 Mie ACCD 探测器(蓝色条)测量的示例性信号分布和通过 FI 传输的信号的 Lorentzian 拟合,用于确定 Mie 条纹质心位置 m。 (c)用瑞利 ACCD 探测器测得的示例性信号分布(绿色条)和通过两个 FPI 传输的信号的高斯拟合(A:粉色,B:橙色)用于确定瑞利点位置 r A 和 r B 。 div>